Communications for Statistical Applications and Methods
/
v.10
no.2
/
pp.585-594
/
2003
It has been generally recognized that conventional binomial or Poisson model provides poor fits to the actual correlated binary data due to the extra-binomial variation. A number of generalized statistical models have been proposed to account for this additional variation. Among them, beta-binomial, correlated-binomial, and modified-binomial models are binomial-related models which are frequently used in modeling the sum of n correlated binary data. In many situations, it is reasonable to assume that n correlated binary data are exchangeable, which is a special case of correlated binary data. The sum of n exchangeable correlated binary data is modeled relatively well when the above three binomial-related models are applied. But the estimation results of correlation coefficient turn to be quite different. Hence, it is important to identify which model provides better estimates of model parameters(success probability, correlation coefficient). For this purpose, a small-scale simulation study is performed to compare the behavior of above three models.
Purpose: Since traditional p chart is unable to deal with the variation of attribute data, this paper proposes a new attribute control chart for nonconforming proportions incorporating overdispersion with a beta-binomial model. Methods: Statistical theories for control chart developed under the beta-binomial model and a new approach using this control chart are presented Results: False alarm probabilities of p chart with the beta-binomial model are evaluated and demerits of p chart under overdispersion are discussed from three examples. Hence a concrete procedure for the proposed control chart is provided and illustrated with examples Conclusion: The proposed chart is more useful than traditional p chart, individual chart to treat observed proportions nonconforming as variable data and Laney p' chart.
For bivariate binomial data with both intra and inter-class correlation, Danaher and Hardie (2005) proposed a bivariate beta-binomial model. However, the model is limited to the situation where the intra-class correlation is strictly positive. Thus it might be seriously inadequate for data with a negative intra-class correlation. Several authors have considered generalized binomial distributions covering a wider range of intra-class correlation which could relax the possible model restrictions imposed. Among others there are the additive/multiplicative and the beta/extended beta binomial model. In this study, bivariate models of the Sarmanov (1966) type are formed by combining each of those univariate models to take care of the inter-class correlation, and are evaluated in terms of the goodness-of-fit. As a result, B-mB and B-ebB are fitted, successfully, to real data and that B-mB, which has a wider permissible range than B-ebB for the intra-class correlation is relatively preferred.
In the proportional hazard model with the beta process prior, the posterior computation with the discrete approximation is considered. The time period of interest is partitioned by small intervals. On each partitioning interval, the likelihood is approximated by that of a binomial experiment and the beta process prior is by a beta distribution. Consequently, the posterior is approximated by that of many independent binomial model with beta priors. The analysis of the leukemia remission data is given as an example. It is illustrated that the length of the partitioning interval affects the posterior and one needs to be careful in choosing it.
Infestations of Aphis gossypii per leaf in greenhouse cultivation of cucumbers were investigated to develop binomial sampling plans. An empirical $P_T-m$ model, $ln(m)={\alpha}+{\beta}ln[-ln(1-P_T)]$, was used to evaluate relationship between the proportion of infested leaves with ${\leq}$ T aphids per leaf ($P_T$) and mean aphid density (m). Tally thresholds (T) were set to 1, 3, 5, 7, and 9 aphids per leaf to find appropriate T in greenhouse cultivation of cucumbers. Increasing sample size had little effect on the precision of the binomial sampling plan. However, the precision increased with tally threshold. The binomial model with T = 5 provided appropriate predictions of the mean densities of A. gossypii in the greenhouse cultivation of cucumbers. Using a binomial model with T = 5 (sample size = 200), a wide range of densities (1.2 - 222.8 aphids per leaf) could be estimated with precision levels of 0.346 - 0.380 for $P_T$ values between 0.15 and 0.96. Binomial models were validated at T = 5 and 7 using 12 independent data sets. Both binomial models were robust and adequately described aphid densities; most of the independent sampling data fell within 95% confidence intervals around the prediction model.
We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.
We discuss a model for acceptance/rejection decision regarding finite populations. The model is based on a beta-binomial prior distribution and additive costs -- relative sampling costs, relative sorting costs and costs of accepted defectives. A substantial part of the paper is devoted to constructing a Bayes sequential sampling acceptance plan (BSSAP) for attributes under the model. It is shown that the Bayes fixed size sampling acceptance plans (BFSAP) are better than the Hald's (1960) single sampling acceptance plans based on a uniform prior. Some tables and examples are provided for comprisons of the minimum Bayes risks of the BSSAP and those of the BFSAP based on a uniform prior and the model.
Beta-binomial model, which is reparametrized in terms of the mean probability $\mu$ of a positive deagnosis and the $\kappa$ of agreement, is widely used in psychology. When $\mu$ is close to 0, inference about $\kappa$ become difficult because likelihood function becomes constant. We consider Bayesian approach in this case. To apply Bayesian analysis, Gibbs sampler is used to overcome difficulties in integration. Marginal posterior density functions are estimated and Bayesian estimates are derived by using Gibbs sampler and compare the results with the one obtained by using numerical integration.
The density of citrus red mite(CRM), Panonychus citri(McGregor), on the commercial satsuma mandarin Citrus unshiu L. groves were determined by counts of the number of CRM per leaf using by leaf sample in Jeju for 2 years. Binomial sampling plans were developed based on the relationship between the mean density per leaf(m) and the proportion of leaf infested with less than T mites per leaf($P_{T}$), according to the empirical model $ln(m)={\alpha}+{\beta}ln(-ln(1-P_{T}))$. T was defined as tally threshold, and set to 1, 3, 5 and 7 mites per leaf in this study. Increasing sample size, regardless of tally threshold, had little effects on the precision of the binomial sampling plan. Increasing sampling size had little effect on the precision of the estimated mean regardless of tally thresholds. T=1 was chosen as the best tally threshold for estimating densities of CRM based on the precision of the model. The binomial model with T=1 provided reliable predictions of mean densities of CRM observed on the commercial satsuma mandarin groves. Binomial sequential sampling procedure were developed for classifying the density of CRM. A binomial sampling program for decision-making CRM population level based on action threshold of 2 mites per leaf was obtained.
Communications for Statistical Applications and Methods
/
v.18
no.4
/
pp.507-516
/
2011
Comparative studies on generalized binomial models (Moon, 2003; Ng, 1989; Paul, 1985; Kupper and Haseman, 1978; Griffiths, 1973) are restrictive in that the models compared are rather limited and MSE of the estimates is the only measure considered for the model adequacy. This paper is aimed to report simulation results which provide possible guidelines for selecting a proper model. We examine Pearson type of goodness-of-fit statistic to its degrees of freedom and AIC for the overall model quality. MSE and Bias of the individual estimates are also considered as the component fit measures. Performance of some models varies widely for a certain range of the parameter space while most of the models are quite competent. Our evaluation shows that the Extended Beta-Binomial model (Prentice, 1986) turns out to be particularly favorable in the point that it provides consistently excellent fit almost all over the values of the intra-class correlation coefficient and the probability of success.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.