• Title/Summary/Keyword: Beta-Adrenergic Agonist

Search Result 51, Processing Time 0.026 seconds

Excessive Levels of Dietary Protein and Energy Induce Lack of Growth Promoting Effects of Clenbuterol in Broilers

  • Hamano, Y.;Yamazaki, S.;Kume, K.;Kobayashi, S.;Terashima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.566-572
    • /
    • 1998
  • The present study examined the effects of excessive dietary protein and energy on growth response to clenbuterol in broilers. The chicks were allocated into 6 groups at 14d old, and used for a $3{\times}2$ factorial experiment. Birds were fed six diets, the control diet containing 21% crude protein (CP) and 3,100 kcal of metabolizable energy ME/kg, a high protein (30% CP) or a high energy (3,500 kcal/ ME/kg) diet, with or without 1 ppm clenbuterol, for 18 d. Clenbuterol feeding markedly decreased (p < 0.05) body weight gain by 23% in the high energy group. Feed intake was also decreased (p < 0.05) by clenbuterol administration across diet treatments. Abdominal fat weight was reduced (p < 0.05) by clenbuterol only when chickens were fed the high energy diet. Clenbuterol increased (p < 0.05) leg muscle weight in the control diet group, but decreased (p < 0.05) it in the high energy group. Muscle protein concentration was increased by 11 % in leg muscle only of the birds at the high energy level. In leg muscle, clenbuterol enhanced the protein/DNA ratio by 18%, except for the high protein group. These results indicate that feeding a diet containing excessive amounts of protein and more energy than normal did not necessarily improve growth response to clenbuterol.

Clenbuterol Inhibits SREBP-1c Expression by Activating CREB1

  • Zhou, Lei;Li, Yixing;Nie, Tao;Feng, Shengqiu;Yuan, Jihong;Chen, Huaping;Yang, Zaiqing
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • As a $\beta_2$-adrenergic agonist, clenbuterol decreases body fat, but the molecular mechanism underlying this process is unclear. In the present study, we treated 293T and L-02 cells with clenbuterol and found that clenbuterol downregulates SREBP-1c expression and upregulates CREB1 expression. Considering SREBP-1c has the function of regulating the transcription of several lipogenic enzymes, we considered that the downregulation of SREBP-1c is responsible for body fat reduction by clenbuterol. Many previous studies have found that clenbuterol markedly increases intracellular cAMP levels, therefore, we also investigated whether CREB1 is involved in this process. The data from our experiments indicate that CREB1 overexpression inhibits SREBP-1c transcription, and that this action is antagonized by CREB2, a competitive inhibitor of CREB1. Furthermore, since PPARs are able to repress SREBP-1c transcription, we investigated whether clenbuterol and CREB1 function via a pathway involving PPAR activation. However, our results showed that clenbuterol or CREB1 overexpression suppressed PPARs transcription in 293T and L-02 cells, which suggested that they impair SREBP-1c expression in other ways.

Energy Utilization of Growing Chicks in Various Nutritional Conditions

  • Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.903-909
    • /
    • 2003
  • For the last two decades, energy utilization of growing chicks has been studied more and more. This paper focuses on the energy utilization estimated by the metabolizable energy (ME) values and the efficiency at which ME is used for growth of chicks under various nutritional environment. Degree of saturation of dietary fats is responsible for nitrogen-corrected apparent metabolizable energy (AMEn) of fats. The effect of dietary fat sources on heat production depends on the kind of unsaturated fatty acids as well as the degree of saturation. Medium chain triglyceride shows lower AME and net energy than long chain triglyceride. Phytase as feed additives increases the AME values of the diet along with improvement of the phosphorous utilization. Ostriches have higher ability to metabolize the energy of fiber-rich foodstuffs than fowls. Their higher ability seems to be associated with fermentation of fiber in the hindgut. Proportions of macronutrients in the diets have influenced not only the gain of body protein and energy but also the oxidative phosphorylation of the chicken liver. Essential amino acids deficiency reduces ME/GE (energy metabolizability) little, if any. Growing chicks respond to a deficiency of single essential amino acids with the reduction of energy retained as protein and increased energy retained as fat. Thus, energy retention is proportional to ME intake despite deficiency, and efficiency of ME utilization is not affected by deficiency of amino acids. Effect of oral administration of clenbuterol, a beta-adrenergic agonist, on the utilization of ME varies with the dose of the agents. Although the heat production related to eating behavior has been estimated less than 5% of ME, tube-feeding diets decreases HI by about 30%.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Nephron Heterogeneity of Renin Release in Rat Kidney Slices: Effects of L-Isoproterenol, Angiotensin II and TMB-8

  • Seul, Kyung-Hwan;Kim, Suhn-Hee;Koh, Gou-Young;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • In order to determine possible relationships between the renin-angiotensin system and nephron heterogeneity, we compared the response of renin release and the angiotensin-converting enzyme (ACE) activity from different areas of the rat kidney. We used the renal cortical slices from the capsular surface to the juxtamedullary junction. Slices from outer one-third of the cortex were designated as outer cortical slices (OC), middle one-third as midcortical slices (MC), and inner one-third as inner cortical slices (IC). The renal renin content markedly decreased from OC and MC to IC. The basal lenin release was higher in OC than in MC or IC. On the contrary the percent change of renin release in response to L-isoproterenol was significantly higher in MC than in OC or IC. By TMB-8, the renin release in MC by $231{\pm}21%$ was higher than OC by $171{\pm}19%$ or IC by $$162{\pm}19. Angiotensin II suppressed renin release in OC and MC by $68{\pm}2,\;71{\pm}4%$ respectively, but only $40{\pm}7%$ in IC. The ACE activity was higher in IC than in OC, MC, medulla and papilla. The present data indicate that renin content and basal lenin release gradulally decreased from outer (OC) to inner (IC) cortex. The renin release in response to beta-adrenergic agonist, L-isoproterenol and intracellular calcium antagonist, TMB-8 were higher in MC than in OC and IC, but angiotensin II suppressed renin release less in IC than in OC and MC. It is suggested that juxtaglomerular cells of outer, mid-and inner cortices show a difference in renin release response to the stimuli.

  • PDF

Characterization of Intermediate Conductance $K^+$ Channels in Submandibular Gland Acinar Cells

  • Cho, Sung-Man;Piao, Zheng-Gen;Kim, Yoon-Bae;Kim, Joong-Soo;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.305-309
    • /
    • 2002
  • There are some evidences that $K^+$ efflux evoked by muscarinic stimulation is not mainly mediated by large conductance $K^+$ (BK) channels in salivary gland. In this experiment, we therefore characterised non BK channels in rat submandibular gland acinar cells and examined the possibility of agonist effect on this channel using a patch clamp technique. Two types of $K^+$ channels were observed in these cells. BK channels were observed in 3 cells from total 6 cells and its average conductance was $152{\pm}7$ pS (n=3). The conductance of the another types of $K^+$ channel was estimated as $71{\pm}7$ pS (n=6). On the basis of the conductance of this channel, we defined this channel as intermediate conductance $K^+$ (IK) channels, which were observed from all 6 cells we studied. When we increased $Ca^{2+}$ concentration of the bath solution in inside-out mode, the IK channel activity was greatly increased, suggesting this channel is $Ca^{2+}$ sensitive. We next examined the effect of carbachol (CCh) and isoproterenol on the activity of the IK channels. $10^{-5}$ M isoproterenol significantly increased the open probability (Po) from $0.08{\pm}0.02$ to $0.21{\pm}0.03$ (n=4, P<0.05). Application of $10^{-5}$ M CCh also increased Po from $0.048{\pm}0.03$ to $0.55{\pm}0.33$ (n=5, P<0.05) at the maximum channel activity. The degree of BK channel activation induced by the same concentration of CCh was lower than that of IK channels; Po value was $0.011{\pm}0.003$ and $0.027{\pm}0.005$ in control and during CCh stimulation (n=3), respectively. The result suggests that IK channels exist in salivary acinar cells and its channel activity is regulated by muscaricinic and ${\beta}-adrenergic$ agonist. We conclude that IK channels also play a putative role in secretion as well as the BK channels in rat submandibular gland acinar cells.

A Comparison of Salmeterol with Salbutamol Inhalation in Treatment of Mild to Moderate Asthma (기관지 천식 환자에 있어서 살메테롤과 살부타몰 흡입제의 치료효과비교)

  • Rhee, Yang-Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.815-821
    • /
    • 1997
  • Background : Salmeterol, a new ${\beta}_2$-adrenergic receptor agonist, is a long-acting bronchodilator and benefits patients with asthma who have nocturnal symptoms. We wished to assess the efficacy of inhaled salmeterol ($50{\mu}g$ bid) compared to inhaled salbutamol ($200{\mu}g$ qid) for the treatment of bronchial asthma, particularly nocturnal asthma. Method : We randomly assigned 35 patients (25 female and 10 male patients, 15 to 50 years old) to one of two treatment groups : one group received $50{\mu}g$ of salmeterol twice daily and another did $200{\mu}g$ salbutamol four times per day. And this study was performed as an open-label and the 6 weeks inhalation period. Results : Analysis of symptam score ; Day and night time symptom score showed significant difference between salmeterol and salbutamol Group (p<0.05). Number of days for additional bronchodilator requirements; The number of days and puffs for additional bronchodilator were lower in the salmeterol group in either day and night time (p<0.05). Pulmonary function test ; $FEV_1$ showed significant increase in salmeterol group compared to salbutamol group after 2 and 4 weeks inhalation period. Adverse effects ; We found no evidence of tolerance to the bronchodilating effects of salmeterol, and adverse reactions to all the treatments were infrequent and mild. Conclusion : For the management of bronchial asthma, salmeterol given twice daily is superior to salbutamol given four times daily.

  • PDF

Mechanism of isoproterenol-induced relaxation of the rat uterine smooth muscle: Activation of 4-aminopyridine-sensitive K+ channels (Isoproterenol에 의한 자궁근 이완의 기전 : 4-aminopyridine-sensitive K+ 채널의 개방)

  • Kim, Ki-ha;Lee, Young-jae;Cho, Myung-haing;Lee, Mun-han;Chun, Boe-gwon;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Activation of $K^+$ channels induces relaxation of smooth muscles by reducing electrical excitability and cytosolic free $Ca^{2+}$ level. ${\beta}$-adrenergic agonist isoproterenol is known to induce relaxation of the uterine smooth muscle by membrane hyperpolarization and $K^+$ efflux. Recently it is suggested that the activity of $Ca^{2+}$-activated $K^+$ channel was increased by isoproterenol in the uterine myocytes isolated from myometrium of the pregnant rat. However, the type of $K^+$ channel mediating the relaxant effect of isopreterenol in the tissue level has not yet studied. In this work, we investigated the type of $K^+$ channels involved in the isoproterenol-induced relaxation of uterine smooth muscle by measuring the integrated insometric tension of the estrogen-treated isolated nonpregnant rat uterus. Contraction of uterine tissue was induced by oxytocin (0.2nM, 2~3 contractions/min) or high KCl(20~80mM). The result are as follows : 1. Isoproterenol($10^{-10}{\sim}10^{-4}M$) inhibited oxytocin-induced contraction of isolated rat uterus($EC_{50}=1.17{\times}10^{-10}M$). 2. Isoproterenol($10^{-10}{\sim}10^{-4}M$) effectively inhibited uterine contraction induced by low KCl(20~40mM) but little those induced by high KCl(60~80mM). 3. Relaxant effect of isoproterenol($10^{-10}{\sim}10^{-4}M$) on 0.2nM oxytocin-induced contraction was effectively reduced by 4-aminopyridine(3, 10mM) but little by TEA(10~30mM), $Ba^{2+}$($1{\sim}30{\mu}M$) and glibenclamide($100{\mu}M$). Our data suggest that the relaxant effect of isoproterenol is mediated by the $K^+$ channel(s) which can be blocked by 4-aminopyridine.

  • PDF

Inhibitory Effects of ${\gamma}$-Aminobutyric Acid on the Contractility of Isolated Rat Vas Deferens (흰쥐의 적출 정관 수축성에 대한 ${\gamma}$-Aminobutyric Acid의 억제작용)

  • Ahn, Ki-Young;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.382-395
    • /
    • 1992
  • GABA is an inhibitory neurotransmitter in central nervous system and produce sedative, antianxiety and muscle reaxing effects via $GABA_A$ receptor or $GABA_B$ receptor. Recently it is known that GABA is widely distributed throughout peripheral organs and may playa physiological role in certain organ. The vas deferens is innervated by species-difference. These study, therefore, was performed to investigate the mode and the mechanism of action of GABA on the norepiniphrine-, ATP- and electric stimulation-induced contraction of vas deferens of rat. Sprague-Dawley rats were sacrificed by cervical dislocation. The smooth muscle strips were isolated from the prostastic portion and were mounted in the isolated muscle bath. PSS in the bath was aerated with 95/5%-$O_2/CO_2$ at $33^{\circ}C$. Muscle tensions were measured by isometric tension transducer and were recorded by biological recording system. 1. GABA, muscimol, a $GAB_A$ agonist, and baclofen, a $GABA_B$ agonist inhibited the electric field stimulation(EFS, 0.2Hz, 1mSec, 80 V, monophasic square wave)-induced contraction with a rank order of potency of GABA greater than baclofen greater than muscimol. 2. The inhibitory effect of GABA was antagonized by delta aminovaleric acid(DAVA), a $GABA_B$ antagonist, but not by bicuculline, a $GABA_A$ mtagonist. 3. The inhibitory effect of baclofen was antagonized by DAVA, but the effect of muscimol was not antagonized by bicuculline. 4. Exogenous norepinephrine(NE) and ATP contracted muscle strip concentration dependently, but the effect of acetylcholine was negligible : and GABA did not affect the NE-and ATP-induced contractions. 5. GABA, baclofen and muscimol did not affect basal tone, and GABA did not affect the NE-and ATP-induced contractionsm 6. EFS-induced contraction was including 2 distinctable components. The first phasic component was inhibited by beta gamma-methylene ATP(mATP), a desensitizing agent of APT receptor and the second tonic component was reduced by pretreatment of reserpine(3 mg/Kg, IP). 7. GABA inhibited the EFS-induced contraction of reserpinized strips, but not the mATP-treated strips. These results suggest that in the prostatic portion of the rat vas deferens, adrenergic and purinergic neurotransmissions are exist, and GABA inhibits the release of ATP via presynaptic $GABA_B$ receptor on the excitatory neurons.

  • PDF