• Title/Summary/Keyword: Bessel transfer function model

Search Result 8, Processing Time 0.022 seconds

A Study on the Power supply of a magnetic levitation system(MAGLEV) (자기부상열차용 전원장치에 관한 연구)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Jeon, Ji-Young;Oh, Bong-Hwan;Lee, Hoon-Goo;Kim, Yong-Joo;Han, Kyung-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.258-266
    • /
    • 2007
  • When the magnetic levitation system(MAGLEV) initially rise, The MAGLEV has a weak point that is very large variation of the electric current. In this paper, The author applied the multi-loop-control to stably control the magnetic levitation system(MAGLEV). The gains of the control algorithm were selected based on pole locations formulated from a prototype Bessel transfer function model. The design incorporate tradeoffs in DC-to-DC converter hard-ware para-meters and pole locations. In order to confirm the superiority of the proposed pole selection md controller, MATLAB simulation and experiment results are presented.

Heat Transfer Analysis of Ice Slurry Generator (아이스슬러리 제빙장치의 열전달 해석)

  • Shin, You-Hwan;Lee, Yoon-Pyo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.984-989
    • /
    • 2009
  • The present study has been conducted to predict the temperature distribution in the core of the scraper type ice generator. The analytic model was simplified as the flow in the annular type cylinder, which had an inside wall moving in axial direction due to the rotation of screw and a fixed outside wall. The governing equations were arranged by the method of separation of variables. The results corresponded to the exact solutions of the Bessel function. The qualitative results such as general characteristics of heat transfer in annulus flow from outer cylinder wall to the inside wall were obtained. However the amount of the heat transfer was underestimated as low as $1/5{\sim}1/6$ of the designed value.

  • PDF

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line (기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향)

  • Yoon, S.J.;Son, B.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

DC-DC Converter Control of Maglev Considering a fast response (속응성을 고려한 자기부상열차용 DC-DC 컨버터 제어)

  • Jho J.M.;Sung H.K.;Jeong B.S.;Kim B.S.;Jeon K.Y.;Han K.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1217-1219
    • /
    • 2004
  • This paper presents a modified PI control algorithm using pole placement for DC-to-DC converter of a magnetic levitation system(MAGLEV). The gains of the control algorithm were selected based on pole locations formulated from a prototype Bessel transfer function model. The design incorporate tradeoffs in DC-to-DC converter hardware parameters and pole locations. In order to confirm the superiority of the proposed pole selection and controller, simulation and experiment results are presented.

  • PDF

A Study on the Power Supply of a magnetic levitation system(MAGLEV) using pole placement technique (극배치 제어기법을 이용한 자기부상열차용 전원장치에 관한 연구)

  • Chung, C.B.;Lee, S.H.;Kim, E.K;Jo, J.M.;Jeon, K.Y.;Kang, S.O.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.418-420
    • /
    • 2007
  • When the magnetic levitation system(MAGLEV) initially rise, The MAGLEV has a weak point that is very large variation of the electric current. In this paper, The author applied the multi-loop-control to stably control the magnetic levitation system(MAGLEV). The gains of the control algorithm were selected based on pole locations formulated from a prototype Bessel transfer function model. The design incorporate tradeoffs in DC-to-DC converter hard-ware para-meters and pole locations. In order to confirm the superiority of the proposed pole selection and controller, MATLAB simulation and experiment results are presented.

  • PDF

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

DC-DC Power Supply for Maglev Consideration with Quick Response Character (속응성을 고려한 자기부상열차용 DC-DC 전원장치)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Jho, Jeong-Min;Kim, Dae-Gyun;Lee, Seung-Hwan;Oh, Bong-Hwan;Lee, Hoon-Goo;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.134-136
    • /
    • 2005
  • The author present a modified multi-loop algorithm Including feedforward for controlling a 55kW stepdown chopper in the power supply of Maglev The gains of the control algorithm were selected based on pole locations formulated from a prototype Bessel transfer function model. The design incorporate tradeoffs in DC-to-DC converter hard-ware para-meters and pole locations. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. In order to verify the validity of the proposed multi-loop controller, simulation study was tried using Matlab simulink.

  • PDF