• 제목/요약/키워드: Bert

검색결과 390건 처리시간 0.019초

크루얼티 프리 패션 브랜드의 커뮤니케이션 성과 분석 - 브랜드 주도적 이미지와 소비자 지각 이미지에 대한 비교 - (Evaluation of communication effectiveness of cruelty-free fashion brands - A comparative study of brand-led and consumer-perceived images -)

  • 최영현;이상영
    • 복식문화연구
    • /
    • 제32권2호
    • /
    • pp.247-259
    • /
    • 2024
  • This study assessed the effectiveness of brand image communication on consumer perceptions of cruelty-free fashion brands. Brand messaging data were gathered from postings on the official Instagram accounts of three cruelty-free fashion brands and consumer perception data were gathered from Tweets containing keywords related to each brand. Web crawling and natural language processing were performed using Python and sentiment analysis was conducted using the BERT model. By analyzing Instagram content from Stella McCartney, Patagonia, and Freitag from their inception until 2021, this study found these brands all emphasize environmental aspects but with differing focuses: Stella McCartney on ecological conservation, Patagonia on an active outdoor image, and Freitag on upcycled products. Keyword analysis further indicated consumers perceive these brands in line with their brand messaging: Stella McCartney as high-end and eco-friendly, Patagonia as active and environmentally conscious, and Freitag as centered on recycling. Results based on the assessment of the alignment between brand-driven images and consumer-perceived images and the sentiment evaluation of the brand confirmed the outcomes of brand communication performance. The study revealed a correlation between brand image and positive consumer evaluations, indicating that higher alignment of ethical values leads to more positive consumer assessments. Given that consumers tend to prioritize search keywords over brand concepts, it's important for brands to focus on using visual imagery and promotions to effectively convey brand communication information. These findings highlight the importance of brand communication by emphasizing the connection between ethical brand images and consumer perceptions.

음원 메타데이터 임베딩을 활용한 사용자 플레이리스트 기반 음악 추천 (User Playlist-Based Music Recommendation Using Music Metadata Embedding)

  • 남경민;박유림;정지영;김도현;김현희
    • 정보처리학회 논문지
    • /
    • 제13권8호
    • /
    • pp.367-373
    • /
    • 2024
  • 모바일 기기와 네트워크 인프라의 성장은 음악 산업에 상당한 변화를 초래하였다. 온라인 스트리밍 서비스의 등장으로 시공간의 제약 없이 음악 청취가 가능해졌고 소비자의 음악 창작과 공유 활동의 증가로 방대한 양의 음원 데이터가 축적되었다. 이로써 사용자의 취향에 맞는 추천을 위해 사용자의 행동 데이터를 기반으로 한 개인 맞춤형 음악 추천 모델이 활발히 연구되고 있다. 그러나 신규 사용자의 경우, 데이터가 부족하여 적절한 추천이 어려운 콜드 스타트 현상을 초래할 수 있다. 본 연구에서는 플레이리스트를 활용하여 음원 메타데이터를 Song sentence로 정의하고, 고차원 벡터 공간에 임베딩하여 유사도를 계산한 추천 알고리즘을 제안한다. 성능 평가 결과 가수, 장르, 작곡가, 작사가, 편곡가, 시대, 계절, 감정, 태그 리스트를 모두 활용한 제안하는 음원 추천 알고리즘이 가장 높은 성능을 보임을 알 수 있었다. 제안하는 추천 알고리즘은 사용자의 과거 행동 데이터에 기반한 추천 시스템이 아닌 음원이 자체적으로 보유한 정보에 근거하기 때문에 콜드 스타트 현상과 더불어 정보 편식 현상을 보완하여 사용자에게 보다 편리한 음악 감상 경험을 제공할 수 있을 것으로 기대된다.

BERTopic을 활용한 불면증 소셜 데이터 토픽 모델링 및 불면증 경향 문헌 딥러닝 자동분류 모델 구축 (Topic Modeling Insomnia Social Media Corpus using BERTopic and Building Automatic Deep Learning Classification Model)

  • 고영수;이수빈;차민정;김성덕;이주희;한지영;송민
    • 정보관리학회지
    • /
    • 제39권2호
    • /
    • pp.111-129
    • /
    • 2022
  • 불면증은 최근 5년 새 환자가 20% 이상 증가하고 있는 현대 사회의 만성적인 질병이다. 수면이 부족할 경우 나타나는 개인 및 사회적 문제가 심각하고 불면증의 유발 요인이 복합적으로 작용하고 있어서 진단 및 치료가 중요한 질환이다. 본 연구는 자유롭게 의견을 표출하는 소셜 미디어 'Reddit'의 불면증 커뮤니티인 'insomnia'를 대상으로 5,699개의 데이터를 수집하였고 이를 국제수면장애분류 ICSD-3 기준과 정신의학과 전문의의 자문을 받은 가이드라인을 바탕으로 불면증 경향 문헌과 비경향 문헌으로 태깅하여 불면증 말뭉치를 구축하였다. 구축된 불면증 말뭉치를 학습데이터로 하여 5개의 딥러닝 언어모델(BERT, RoBERTa, ALBERT, ELECTRA, XLNet)을 훈련시켰고 성능 평가 결과 RoBERTa가 정확도, 정밀도, 재현율, F1점수에서 가장 높은 성능을 보였다. 불면증 소셜 데이터를 심층적으로 분석하기 위해 기존에 많이 사용되었던 LDA의 약점을 보완하며 새롭게 등장한 BERTopic 방법을 사용하여 토픽 모델링을 진행하였다. 계층적 클러스터링 분석 결과 8개의 주제군('부정적 감정', '조언 및 도움과 감사', '불면증 관련 질병', '수면제', '운동 및 식습관', '신체적 특징', '활동적 특징', '환경적 특징')을 확인할 수 있었다. 이용자들은 불면증 커뮤니티에서 부정 감정을 표현하고 도움과 조언을 구하는 모습을 보였다. 또한, 불면증과 관련된 질병들을 언급하고 수면제 사용에 대한 담론을 나누며 운동 및 식습관에 관한 관심을 표현하고 있었다. 발견된 불면증 관련 특징으로는 호흡, 임신, 심장 등의 신체적 특징과 좀비, 수면 경련, 그로기상태 등의 활동적 특징, 햇빛, 담요, 온도, 낮잠 등의 환경적 특징이 확인되었다.

EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용 (Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques)

  • 이현상;이원석;조보근;이희준;오상진;유상우;남마루;이현식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.471-480
    • /
    • 2023
  • 국내 건설수주 규모는 2013년 91.3조원에서 2021년 총 212조원으로 특히 민간부문에서 크게 성장하였다. 국내외 시장 규모가 성장하면서, EPC(Engineering, Procurement, Construction) 프로젝트의 규모와 복잡성이 더욱 증가되고, 이에 프로젝트 관리 및 ITB(Invitation to Bid) 문서의 위험 관리가 중요한 이슈가 되고 있다. EPC 프로젝트 발주 이후 입찰 절차에서 실제 건설 회사에게 부여되는 대응 시간은 한정적일 뿐만 아니라, 인력 및 비용의 문제로 ITB 문서 계약 조항의 모든 리스크를 검토하는데 매우 어려움이 있다. 기존 연구에서는 이와 같은 문제를 해결하고자 EPC 계약 문서의 위험 조항을 범주화하고, 이를 AI 기반으로 탐지하려는 시도가 있었으나, 이는 레이블링 데이터 활용의 한계와 클래스 불균형과 같은 데이터 측면의 문제로 실무에서 활용할 수 있는 수준의 지원 시스템으로 활용하기 어려운 상황이다. 따라서 본 연구는 기존 연구와 같이 위험 조항 자체를 정의하고 분류하는 것이 아니라, FIDIC Yellow 2017(국제 컨설팅엔지니어링 연맹 표준 계약 조건) 기준 계약 조항을 세부적으로 분류할 수 있는 AI 모델을 개발하고자 한다. 프로젝트의 규모, 유형에 따라서 세부적으로 검토해야 하는 계약 조항이 다를 수 있기 때문에 이와 같은 다중 텍스트 분류 기능이 필요하다. 본 연구는 다중 텍스트 분류 모델의 성능 고도화를 위해서 최근 텍스트 데이터의 컨텍스트를 효율적으로 학습할 수 있는 ELECTRA PLM(Pre-trained Language Model)을 사전학습 단계부터 개발하고, 해당 모델의 성능을 검증하기 위해서 총 4단계 실험을 진행했다. 실험 결과, 자체 개발한 ITB-ELECTRA 모델 및 Legal-BERT의 앙상블 버전이 57개 계약 조항 분류에서 가중 평균 F1-Score 기준 76%로 가장 우수한 성능을 달성했다.

CNN 보조 손실을 이용한 차원 기반 감성 분석 (Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis)

  • 전민진;황지원;김종우
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.1-22
    • /
    • 2021
  • 텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.

검증 자료를 활용한 가짜뉴스 탐지 자동화 연구 (A Study on Automated Fake News Detection Using Verification Articles)

  • 한윤진;김근형
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.569-578
    • /
    • 2021
  • 오늘날 웹의 발전으로 우리는 각종 언론 매체를 통해 온라인 기사를 쉽게 접하게 된다. 온라인 기사를 쉽게 접할 수 있게 된 만큼 거짓 정보를 진실로 위장한 가짜뉴스 또한 빈번하게 찾아볼 수 있다. 가짜뉴스가 전 세계적으로 대두되면서 국내에서도 가짜뉴스를 탐지하기 위한 팩트 체크 서비스가 제공되고 있으나, 이는 전문가 기반의 수동 탐지 방법을 기반으로 하며 가짜뉴스 탐지를 자동화하는 기술에 대한 연구가 계속해서 활발하게 이루어지고 있다. 기존 연구는 기사 작성에 사용된 문맥의 특성이나, 기사 제목과 기사 본문의 내용 비교를 통한 탐지 방법이 가장 많이 사용되고 있으나, 이러한 시도는 조작의 정밀도가 높아졌을 때 탐지가 어려워질 수 있다는 한계를 가진다. 따라서 본 논문에서는 기사 조작의 발달에 따른 영향을 받지 않기 위하여 기사의 진위 여부를 판단할 수 있는 검증기사를 함께 사용하는 방법을 제안한다. 또한 가짜뉴스 탐지 정확도를 개선시킬 수 있도록 실험에 사용되는 기사와 검증기사를 문서 요약 모델을 통해 요약하는 과정을 추가했다. 본 논문에서는 제안 알고리즘을 검증하기 위해 문서 요약 기법 검증, 검증기사 검색 기법 검증, 그리고 최종적인 제안 알고리즘의 가짜뉴스 탐지 정확도 검증을 진행하였다. 본 연구에서 제안한 알고리즘은 다양한 언론 매체에 적용하여 기사가 온라인으로 확산되기 이전에 진위 여부를 판단하는 방법으로 유용하게 사용될 수 있다.

불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구 (A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data)

  • 최종우;이영준;임채균;최호진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권7호
    • /
    • pp.295-302
    • /
    • 2023
  • 자연어로 작성되는 소프트웨어 요구사항은 이해관계자가 바라보는 관점에 따라 의미가 달라질 수 있다. 품질 속성 기반으로 아키텍처 설계시에 품질 속성별로 적합한 설계 전술(Tactic)을 선택해야 효율적인 설계가 가능해 품질 속성 요구사항의 정확한 분류가 필요하다. 이에 따라 고비용 작업인 요구사항 분류에 관한 자연어처리 모델이 많이 연구되고 있지만, 품질 속성 데이터셋(dataset)의 불균형을 처리해 분류 성능을 개선하는 주제는 많이 다루고 있지 않다. 본 연구에서는 먼저 실험을 통해 분류 모델이 한국어 요구사항 데이터셋을 자동으로 분류할 수 있음을 보인다. 이 결과를 바탕으로 EDA(Easy Data Augmentation) 기법을 통한 데이터 증강과 언더샘플링(undersampling) 전략으로 품질 속성 데이터셋의 불균형을 개선할 수 있음을 설명하고 요구사항의 카테고리 분류에 효과가 있음을 보인다. 실험 결과 F1 점수(F1-Score) 기준으로 최대 5.24%p 향상되어 불균형 데이터 처리 기법이 분류 모델의 한국어 요구사항 분류에 도움이 됨을 확인할 수 있다. 또한, EDA의 세부 실험을 통해 분류 성능 개선에 도움이 되는 데이터 증강 연산에 관해 설명한다.

AI면접 대상자에 대한 다면적 평가방법론 -얼굴인식, 음성분석, 자연어처리 영역의 융합 (Multifaceted Evaluation Methodology for AI Interview Candidates - Integration of Facial Recognition, Voice Analysis, and Natural Language Processing)

  • 지현욱;이상진;문성민;이재열;이동은;임규상
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.55-58
    • /
    • 2024
  • 최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.

  • PDF

특허 데이터 기반 생성형 AI 기술 동향 분석 (Analysis of Generative AI Technology Trends Based on Patent Data)

  • 유성무;송태원;이민정;최윤주;설순욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2024
  • 본 논문은 특허 출원 문서를 기초로 하여 생성형 AI 기술의 동향을 분석한다. 이를 위해 2003년부터 2023년까지 한국, 미국, 유럽에서 출원된 생성형 AI 관련 특허 5,433건을 선별하고, 국가별, 기술 분야별, 연도별, 출원인별 데이터를 분석하고 시각적으로 제시함으로써 시사점을 찾고 기술 흐름을 확인하고자 한다. 분석 결과, 이미지 분야의 특허가 36.9%로 가장 많고 지속적으로 출원 건수가 상승하고 있지만, 문장/문서나 음악/음성 분야는 2019년 이후로 출원이 감소하거나 유지되고 있다. 가장 많은 특허를 출원한 기업은 한국 기업이지만 상위 5개 출원인 중 4개가 미국 기업이며 모든 기업이 미국에 가장 많은 특허를 출원하고 있어 생성형 AI는 미국 시장을 중심으로 성장하고 경쟁하고 있음을 확인하였다. 논문의 분석 결과는 향후 생성형 AI 연구 개발과 지식 재산 확보 전략을 수립하는 데 활용될 수 있을 것으로 기대된다.

대형 언어 모델을 활용한 한국어 식품 리뷰 분석: 감성분석과 다중 라벨링을 통한 식품안전 위해 탐지 연구 (Korean Food Review Analysis Using Large Language Models: Sentiment Analysis and Multi-Labeling for Food Safety Hazard Detection)

  • 최은선;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.75-88
    • /
    • 2024
  • 최근 온라인 플랫폼에서 구입한 육회를 섭취한 후 식중독 증상을 호소하거나 방울토마토에서 쓴맛이 난다는 리뷰가 뉴스에 등장한 사례가 있다. 이것은 정부 기관, 식품 제조업체나 유통업체가 온라인 플랫폼의 식품 리뷰를 분석하여 식품 위해를 탐지함으로써 소비자 식품안전 위험을 관리할 수 있음을 시사한다. 본 연구는 감성분석과 대형 언어 모델을 활용하여 식품 리뷰를 분석하고, 부정적인 리뷰를 탐지하여 주요 식품안전 위해(식중독, 변질, 화학적 이취, 이물질)를 다중 라벨링하는 분류 모델을 제안한다. 감성 분류 모델에서는 'funnel' 모델이 낮은 False Positive 비율로 부정 리뷰의 오분류 가능성을 최소화하는 데 효과적이었다. 식품안전 위해 다중 라벨링 모델은 GPT-3.5 보다 GPT-4 Turbo를 활용한 것이 재현율과 정확도 모두 96% 이상으로 높은 성능을 보였다. 정부 기관, 식품 제조업체나 유통업체는 제안된 모델을 사용하여 소비자 리뷰를 실시간으로 모니터링하고, 잠재적인 식품안전 문제를 조기에 탐지함으로써 위험을 관리할 수 있다. 이와 같은 시스템은 기업의 브랜드 평판을 보호하고, 소비자 보호를 강화하며, 궁극적으로는 소비자의 건강과 안전을 증진시키는 결과를 가져올 수 있다.