• Title/Summary/Keyword: Bert

Search Result 390, Processing Time 0.024 seconds

Sentiment Analysis BERT Models Challenge (좌충우돌 감성분석 BERT 미세조정 분석)

  • Park, Jung-Won;Mo, Hyun-Su;Kim, Jeong-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.13-15
    • /
    • 2021
  • 텍스트에 나타나는 감성을 분석하는 NLP task 중 하나인 감성분석에 자주 사용되는 한국어와 외국어 데이터들에 대해 다양한 BERT 모델들을 적용한 결과를 고성능 순서로 정리한 사이트(Paper with code)와 Github를 통해 준수한 성능을 보이는 BERT 모델들을 분석하고 실행해보며 성능향상을 통한 차별성을 가지는 것이 목표이다.

  • PDF

Filtering Clinical BERT (FC-BERT): An ADR Detection Model for distinguishing symptoms from adverse drug reactions (Filtering Clinical BERT (FC-BERT): 증상과 약물 이상 반응 구분을 위한 약물 이상 반응 탐지 모델)

  • Lee, Chae-Yeon;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.549-552
    • /
    • 2022
  • 최근 소셜미디어 리뷰 데이터를 활용한 약물 이상 반응 탐지 연구가 활발히 진행되고 있지만, 약물을 복용하기 전 증상과 약물 이상 반응을 구분하지 못한다는 한계가 있다. 본 논문에서는 약물 이상 반응 탐지에서 약물 복용 전의 증상을 구분할 수 있는 Filtering Clinical BERT(FC-BERT) 모델을 제안하였다. FC-BERT 는 약물 복용 전 증상과 다른 약물에 대한 부작용 표현을 제거하기 위해 약물명이 나오기 전 모든 문장을 제거하는 필터링과 약물-부작용 쌍을 추출하는 모델을 사용했다. 성능 평가 실험을 위해 문장에 대한 ADE(Adverse Drug Event) 여부가 들어있는 ADE Corpus V2 데이터를 활용하였고 SPARK NLP 라이브러리에서 제공하는 ADE Pipeline 모델과 비교하여 성능 평가를 실시하였다. 실험 결과 필터링을 활용한 FC-BERT 모델이 기존 모델보다 정확도, 평균 정밀도, 평균 재현율, 평균 F1-score 가 모두 높은 결과를 보여주었다. 본 논문에서 제시한 모델은 기존 연구의 한계점을 보완하여 보다 정확한 약물 부작용 시그널을 탐지하는데 기여할 수 있을 것이다.

Recent R&D Trends for Pretrained Language Model (딥러닝 사전학습 언어모델 기술 동향)

  • Lim, J.H.;Kim, H.K.;Kim, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.9-19
    • /
    • 2020
  • Recently, a technique for applying a deep learning language model pretrained from a large corpus to fine-tuning for each application task has been widely used as a language processing technology. The pretrained language model shows higher performance and satisfactory generalization performance than existing methods. This paper introduces the major research trends related to deep learning pretrained language models in the field of language processing. We describe in detail the motivations, models, learning methods, and results of the BERT language model that had significant influence on subsequent studies. Subsequently, we introduce the results of language model studies after BERT, focusing on SpanBERT, RoBERTa, ALBERT, BART, and ELECTRA. Finally, we introduce the KorBERT pretrained language model, which shows satisfactory performance in Korean language. In addition, we introduce techniques on how to apply the pretrained language model to Korean (agglutinative) language, which consists of a combination of content and functional morphemes, unlike English (refractive) language whose endings change depending on the application.

Sentiment Analysis System by Using BERT Language Model (BERT 언어 모델을 이용한 감정 분석 시스템)

  • Kim, Taek-Hyun;Cho, Dan-Bi;Lee, Hyun-Young;Won, Hye-Jin;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

Korean Morphological Analysis and Part-Of-Speech Tagging with LSTM-CRF based on BERT (BERT기반 LSTM-CRF 모델을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Cheoneum;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.34-36
    • /
    • 2019
  • 기존 딥 러닝을 이용한 형태소 분석 및 품사 태깅(Part-Of-Speech tagging)은 feed-forward neural network에 CRF를 결합하는 방법이나 sequence-to-sequence 모델을 이용한 방법 등의 다양한 모델들이 연구되었다. 본 논문에서는 한국어 형태소 분석 및 품사 태깅을 수행하기 위하여 최근 자연어처리 태스크에서 많은 성능 향상을 보이고 있는 BERT를 기반으로 한 음절 단위 LSTM-CRF 모델을 제안한다. BERT는 양방향성을 가진 트랜스포머(transformer) 인코더를 기반으로 언어 모델을 사전 학습한 것이며, 본 논문에서는 한국어 대용량 코퍼스를 어절 단위로 사전 학습한 KorBERT를 사용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 형태소 분석 및 품사 태깅 연구들 보다 좋은 (세종 코퍼스) F1 98.74%의 성능을 보였다.

  • PDF

The Cardinality Residual Connection Method Applied to Transformer Model combining with BERT Layer (BERT layer를 합성한 Transformer 모델에 적용한 Cardinality Residual connection 방법)

  • Choi, Gyu-Hyeon;Lee, Yo-Han;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.27-31
    • /
    • 2020
  • 본 논문에서는 BERT가 합성된 새로운 Transformer 구조를 제안한 선행연구를 보완하기 위해 cardinality residual connection을 적용한 새로운 구조의 모델을 제안한다. Transformer의 인코더와 디코더의 셀프어텐션에 BERT를 각각 합성한 모델의 잔차연결을 수정하여 학습 속도와 번역 성능을 개선하고자 한다. 그리고 가중치를 다르게 부여하는 실험으로 어텐션을 선택하는 효과적인 방법을 제시하고 원문의 언어에 맞는 BERT를 사용하는 이유를 설명한다. IWSLT14 독일어-영어 말뭉치와 AI hub에서 제공하는 영어-한국어 말뭉치를 이용한 실험에서는 제안하는 방법의 모델이 기존 모델에 비해 더 나은 학습 속도와 번역 성능을 보였다.

  • PDF

Measuring Similarity of Korean Sentences based on BERT (BERT 기반 한국어 문장의 유사도 측정 방법)

  • Hyeon, Jonghwan;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

Korean End-to-end Neural Coreference Resolution with BERT (BERT 기반 End-to-end 신경망을 이용한 한국어 상호참조해결)

  • Kim, Kihun;Park, Cheonum;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.181-184
    • /
    • 2019
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 같은 개체(entity)를 의미하는 멘션을 찾아 그룹화하는 자연어처리 태스크이다. 한국어 상호참조해결에서는 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델과 포인터 네트워크 모델을 이용한 방법이 연구되었다. 구글에서 공개한 BERT 모델은 자연어처리 태스크에 적용되어 많은 성능 향상을 보였다. 본 논문에서는 한국어 상호참조해결을 위한 BERT 기반 end-to-end 신경망 모델을 제안하고, 한국어 데이터로 사전 학습된 KorBERT를 이용하고, 한국어의 구조적, 의미적 특징을 반영하기 위하여 의존구문분석 자질과 개체명 자질을 적용한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터 셋에서 CoNLL F1 (DEV) 71.00%, (TEST) 69.01%의 성능을 보여 기존 연구들에 비하여 높은 성능을 보였다.

  • PDF

Emotion Analysis-Based AI Chatbot System Using GPT-3 and KoBERT (GPT-3와 KoBERT를 활용한 감정 분석 기반 AI 챗봇 시스템)

  • Junhyeon Kim;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.367-368
    • /
    • 2023
  • 최근 챗봇 시스템은 급격한 발전과 함께 사용자와 자연스러운 대화를 할 수 있는 인공지능 기술의 필요성이 대두되고 있다. 기존의 챗봇 시스템은 대화 상황을 충분히 이해하지 못하거나, 학습된 데이터를 벗어나는 문장에 대한 일관성 있는 응답을 제공하지 못하는 한계가 있다. 본 논문에서는 GPT-3와 KoBERT를 활용하여 사용자의 감정 상태를 파악하고 해당 감정을 고려한 일관성 있는 대화를 제공하는 감정 분석 기반 챗봇 시스템을 제안한다. 이를 바탕으로 긍정적인 대화를 이어 나가는데 초점을 두어 자연스러운 대화가 가능할 것으로 기대된다.

  • PDF

CR-M-SpanBERT: Multiple embedding-based DNN coreference resolution using self-attention SpanBERT

  • Joon-young Jung
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.