• Title/Summary/Keyword: Berry-Esseen

Search Result 6, Processing Time 0.016 seconds

A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR BASED ON LINEAR PROCESS ERRORS

  • Liang, Han-Ying;Li, Yu-Yu
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1753-1767
    • /
    • 2008
  • Consider the nonparametric regression model $Y_{ni}\;=\;g(x_{ni})+{\epsilon}_{ni}$ ($1\;{\leq}\;i\;{\leq}\;n$), where g($\cdot$) is an unknown regression function, $x_{ni}$ are known fixed design points, and the correlated errors {${\epsilon}_{ni}$, $1\;{\leq}\;i\;{\leq}\;n$} have the same distribution as {$V_i$, $1\;{\leq}\;i\;{\leq}\;n$}, here $V_t\;=\;{\sum}^{\infty}_{j=-{\infty}}\;{\psi}_je_{t-j}$ with ${\sum}^{\infty}_{j=-{\infty}}\;|{\psi}_j|$ < $\infty$ and {$e_t$} are negatively associated random variables. Under appropriate conditions, we derive a Berry-Esseen type bound for the estimator of g($\cdot$). As corollary, by choice of the weights, the Berry-Esseen type bound can attain O($n^{-1/4}({\log}\;n)^{3/4}$).

BERRY-ESSEEN BOUNDS OF RECURSIVE KERNEL ESTIMATOR OF DENSITY UNDER STRONG MIXING ASSUMPTIONS

  • Liu, Yu-Xiao;Niu, Si-Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.343-358
    • /
    • 2017
  • Let {$X_i$} be a sequence of stationary ${\alpha}-mixing$ random variables with probability density function f(x). The recursive kernel estimators of f(x) are defined by $$\hat{f}_n(x)={\frac{1}{n\sqrt{b_n}}{\sum_{j=1}^{n}}b_j{^{-\frac{1}{2}}K(\frac{x-X_j}{b_j})\;and\;{\tilde{f}}_n(x)={\frac{1}{n}}{\sum_{j=1}^{n}}{\frac{1}{b_j}}K(\frac{x-X_j}{b_j})$$, where 0 < $b_n{\rightarrow}0$ is bandwith and K is some kernel function. Under appropriate conditions, we establish the Berry-Esseen bounds for these estimators of f(x), which show the convergence rates of asymptotic normality of the estimators.

A Berry-Esseen Type Bound in Kernel Density Estimation for a Random Left-Truncation Model

  • Asghari, P.;Fakoor, V.;Sarmad, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.115-124
    • /
    • 2014
  • In this paper we derive a Berry-Esseen type bound for the kernel density estimator of a random left truncated model, in which each datum (Y) is randomly left truncated and is sampled if $Y{\geq}T$, where T is the truncation random variable with an unknown distribution. This unknown distribution is estimated with the Lynden-Bell estimator. In particular the normal approximation rate, by choice of the bandwidth, is shown to be close to $n^{-1/6}$ modulo logarithmic term. We have also investigated this normal approximation rate via a simulation study.

BERRY-ESSEEN BOUND FOR MLE FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION

  • RAO B.L.S. PRAKASA
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.281-295
    • /
    • 2005
  • We investigate the rate of convergence of the distribution of the maximum likelihood estimator (MLE) of an unknown parameter in the drift coefficient of a stochastic process described by a linear stochastic differential equation driven by a fractional Brownian motion (fBm). As a special case, we obtain the rate of convergence for the case of the fractional Ornstein- Uhlenbeck type process studied recently by Kleptsyna and Le Breton (2002).

PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE FOR DEPENDENT RANDOM VARIABLE

  • Han, Kwang-Hee
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.369-380
    • /
    • 2009
  • Let $X,X_1,X_2,\;{\cdots}$ be identically distributed and negatively associated random variables with mean zeros and positive, finite variances. We prove that, if $E{\mid}X_1{\mid}^r$ < ${\infty}$, for 1 < p < 2 and r > $1+{\frac{p}{2}}$, and $lim_{n{\rightarrow}{\infty}}n^{-1}ES^2_n={\sigma}^2$ < ${\infty}$, then $lim_{{\epsilon}{\downarrow}0}{\epsilon}^{{2(r-p}/(2-p)-1}{\sum}^{\infty}_{n=1}n^{{\frac{r}{p}}-2-{\frac{1}{p}}}E\{{{\mid}S_n{\mid}}-{\epsilon}n^{\frac{1}{p}}\}+={\frac{p(2-p)}{(r-p)(2r-p-2)}}E{\mid}Z{\mid}^{\frac{2(r-p)}{2-p}}$, where $S_n\;=\;X_1\;+\;X_2\;+\;{\cdots}\;+\;X_n$ and Z has a normal distribution with mean 0 and variance ${\sigma}^2$.