• Title/Summary/Keyword: Bernoulli-Euler beam

Search Result 425, Processing Time 0.024 seconds

Forced Vibration Analysis of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Yoon, Han-Ki;Min, Byoung-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.90-96
    • /
    • 2012
  • The forced vibration response characteristics of a elastically restrained pipe conveying fluid with attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of attached mass and spring constant on the forced vibration characteristics of pipe at conveying fluid are studied. The forced deflection response of pipe with attached mass due to the variation of fluid velocity is also presented. The deflection response is the mid-span deflection of the pipe. The dimensionless forcing frequency is the range from 0 to 16 which is the first natural frequency of the pipe.

A Study on the Static Rigidity of the End Mill (엔드밀의 정적 강성에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.9-14
    • /
    • 1996
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of radial cross sections of tile helical end mill is calculated for the determination of the relation between cross section and rigidity of tile tools. Using tile Bernoulli-Euler beam and and the concept of equivalent diameter, a deflection model is established, which includes most influence from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill.

  • PDF

Nonlinear Vibration Characteristics of a Curved Pipe with Fixed Ends and Steady Internal Flow (정상 상태 내부 유동이 있는 양단 고정 곡선 파이프의 비선형 진동 특성)

  • Lee, Su-Il;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • The nonlinear differential equations of motion of a fluid conveying curved pipe are derived by use of Hamiltonian approach. The extensible dynamics of curled pipe is based on the Euler-Bernoulli beam theory. Some significant differences between linear and nonlinear equations and the dynamic characteristics are discussed. Generally, it can be shown that the natural frequencies in curved pipes are changed with flow velocity. Linearized natural frequencies of nonlinear equations are slightly different from those of linear equations.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

Characteristics of Forced Vibration of Valve-pipe Systems with a Crack (크랙을 가진 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Kim, Chang-Ho;Cho, Jeong-Rae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1049-1056
    • /
    • 2012
  • The forced vibration response characteristics of a cracked pipe conveying fluid with a concentrated mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of concentrated mass and fluid velocity on the forced vibration characteristics of a cracked pipe conveying fluid are studied. The deflection response is the mid-span deflection of a cracked pipe conveying fluid. As fluid velocity and crack depth are increased, the resonance frequency of the system is decreased. This study will contribute to the decision of optimum fluid velocity and crack detection for the valve-pipe systems.

A study on residual stress distribution in surface grinding (평면연삭에서의 잔류응력 분포에 관한 연구)

  • 김경년;정재천;김기선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF

Buckling Stability of Timoshenko Beams on Two-Parameter Elastic Foundations under an Axial Force (축력을 받고 두 파라메타 탄성기초 위에 놓인 티모센코 보의 좌굴 안정성)

  • 정승호
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.111-122
    • /
    • 1999
  • The paper presents a stability analysis of uniform Timoshenko beams resting on two-parameter elastic foundations. The two-parameter elastic foundations were considered as a shearing layer and Winkler springs in soil models. Governing equations of motion were derived using the Hamilton's principle and finite element analysis was performed and the eigenvalues were obtained for the stability analysis. The numerical results for the buckling stability of beams under axial forces are demonstrated and compared with the exact or available confirmed solutions. Finally, several examples were given for Euler-Bernoulli and Timoshenko beams with various boundary conditions.

  • PDF

Stability of Cantilever-Type Columns under Nonconservative Load (비보존력이 작용하는 캔틸레버형 기둥의 안정성)

  • 오상진;이병구;최규문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.244-251
    • /
    • 2002
  • The purpose of this paper is to investigate the stability of tapered columns with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The column model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered columns subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. After having verified the results of the present study, the frequency and critical divergence/flutter load are presented as functions of various nondimensional system parameters.

  • PDF

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions

  • Arani, Ali Ghorbanpour;Kiani, Farhad
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.149-165
    • /
    • 2018
  • Using the modified couple stress theory and Euler-Bernoulli beam theory, this paper studies nonlinear vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation. Using the Hamilton's principle, the set of the governing equations are derived and solved numerically using differential quadrature method (DQM), Newark beta method and arc-length technique for all kind of the boundary conditions. First convergence and accuracy of the presented solution are demonstrated and then effects of radius of gyration, Poisson's ratio, small scale parameters, temperature changes and coefficients of the foundation on the linear and nonlinear natural frequencies and dynamic response of the microbeam are investigated.