• Title/Summary/Keyword: Bernoulli-Euler보이론

Search Result 3, Processing Time 0.018 seconds

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.