• Title/Summary/Keyword: Benzyl azide

Search Result 12, Processing Time 0.018 seconds

Synthesis of 2-Amino-4,6-Di-O-Benzoyl-3-O-Benzyl-1,2-Dideoxy Mannojirimycin

  • 조재익;윤신숙;천근호;Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.805-808
    • /
    • 1995
  • Diacetone-D-glucose was converted into 5-azido-6-O-benzoyl-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-α-D-glucofuranose. After removal of isopropylidene and benzoyl protecting groups, hydrogenation performed reduction of azide and subsequent cyclization by reductive amination to give 3-O-benzyl-1-deoxy nojirimycin in high yield. The second azide group was introduced on 2-carbon by selective substitution reaction, and reduction of azide to amino group gave titled compound.

Facile Synthesis of Fréchet Type Dendritic Benzyl Azides and Dendrimer via Cycloaddition Reaction with Tripodal Core

  • Lee, Jae-Wook;Kim, Byung-Ku;Kim, Jung-Hwan;Shin, Won-Suk;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1790-1794
    • /
    • 2005
  • Fréchet-type dendritic benzyl azides were efficiently synthesized using 5-(azidomethyl)-1,3-dihydroxybenzene as an azide focal point functionalized unit by adding a generation to the existing dendron and applied for the construction of dendrimers containing 1,2,3-triazole rings as connectors via click chemistry with a tripodal acetylene core.

Synthesis of Poly(benzyl ether) Dendrimers Containing Core Diversitiesby Click Chemistry

  • Lee, Jae-Wook;Kim, Byoung-Ki;Han, Seung-Choul;Kim, Ji-Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.157-162
    • /
    • 2009
  • General, fast, and efficient methods for the synthesis of Fréchet-type dendrimers having core diversities were elaborated. Two core building blocks, 4,4'-(3,5-bis(propargyloxy)benzyloxy)bisphenyl and N,N,N',N'-tetra(prop-2- ynyloxycarbonylethyl)-1,2-diaminoethane, were designed to serve as the alkyne functionalities for dendrimer growth via click reactions with the azide-dendrons. The synthetic strategy involved an 1,3-dipolar cycloaddition reaction between an alkyne and an azide- functionalized Fréchet-type dendrons in the presence of Cu(I) species which is known as the best example of click chemistry.

Synthesis of Poly(benzyl ether) Dendrimers by Click Chemistry (클릭 화학에 의한 폴리(벤질에테르)덴드리머의 효율적인 합성)

  • Lee, Jae-Wook;Lee, Un-Yup;Han, Seung-Choul;Kim, Ji-Hyeon;Jin, Sung-Ho
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • The stitching method for the synthesis of $Fr\acute{e}chet$-type dendrimers was elaborated using click chemistry between an alkyne and an azide. The core building block, 4,4'-(3,5-bis(azidopropyloxy)benzyloxy)bisphenyl, was designed to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne-dendrons. The synthetic strategy involved an 1,3-dipolar cycloaddition reaction between an azide and an alkyne-functionalized $Fr\acute{e}chet$-type dendrons in the presence of Cu(I) species which is known as the best example of click chemistry.

Montmorillonite K-10 Clay as an Efficient Reusable Heterogeneous Catalyst for the Solvent-Free Microwave Mediated Synthesis of 5-Substituted 1H-Tetrazoles

  • Marvi, Omid;Alizadeh, Abdolhamid;Zarrabi, Saeid
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4001-4004
    • /
    • 2011
  • Various 5-substituted 1H-tetrazole derivatives were synthesized in a simple and environmentally benign method from the reaction of aryl and benzyl nitriles with sodium azide in solvent-free media using montmorillonite K-10 clay as solid recyclable heterogeneous acidic catalyst and microwave irradiation in good yields and short reaction times.

Synthesis of Triazole-functionalized Phenolic Resin and its Inherent Flame Retardant Property

  • Poduval, Mithrabinda K.K.;Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3249-3253
    • /
    • 2014
  • A novel triazole-functionalized phenolic resin was developed, and its thermal and flame-retardant properties were investigated. The triazole group was incorporated as a pendant unit on the phenolic resin via copper-mediated click chemistry between propargylated phenolic resin and benzyl azide. The newly-developed triazole-functionalized phenolic resin showed higher thermal stability and char yield, together with a reduced total heat release (THR), than the non-functionalized bare phenolic resin, indicating enhanced flame retardancy for the triazole-functionalized phenolic resin.

Synthesis of an Octapeptide (Alanine Angiotensin) (Octapeptide (Alanine Angiotensin) 의 合成)

  • Park, Won-Kil
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1961
  • We have shown that carboxy-peptidase destroys the biological activity of angiotensin octa-and deca-peptides. Since Proline occurs as the seventh amino acid from the amino end of the chain and since carboxypeptidase does not cleave proline from a peptid chain, it is evident that the heptapeptid H.asp-arg-val-tyr-ileu-his-pro.OH is formed by this hydrolysis. This peptide must then be biologically inactive. In order to determine whether the phenyl group of the C-terminal amino acid was the necessary requirement for biological activity of the octapeptide, $ala^8$ angiotensin octapeptide(amino acids of peptides numbered from amino end) was synthesized. For this synthesis the four dipeptides were prepared: carbobenzoxy-L-prolyl-L-alanine-P-nitrobenzyl-ester, m.p. $134-135^{\circ}C,$ carbobenzoxy-L-isoleucyl-imidazole benzyl-L-histidine methyl ester, m.p. $114-116^{\circ}C,$ carbobenzoxy-L-valyl-L-tyrosine hydrazide and carbobenzoxy B-benzyl-L-aspartyl-nitro-L-arginine. The first three dipeptides were obtained as crystalline compounds. Imidazole-benzyl-L-histidine was used in the hope that it would block the histidine imidazole against side reactions in steps subsequent to the formation of the C-terminal tetrapeptide. Also, it was through that the imidazole benzylated peptides would be easier to crystallize. This, however, was not the case. The tetrapeptide, carbobenzoxy-L-isoleucyl-L-im, benzyl-histidyl, L-prolyl-L-alanine-nitrobenzyl ester was not obtained in a crystalline form. Neither could the mono-or dihydrobromide of the tetrapeptide free base be induced to crystallize. Carbobenzoxy-L-valyl-L-tyrosine azide was condensed with the tetrapeptide free base to yield the protected hexapeptide; carbobenzoxy-L-valyl-L-tyrosyl-L-isoleucyl-L-im, benzyl, histidyl-L-Prolyl-L-alanine-nitrobenzyl ester. Upon removal of the carbobenzoxy group with hydrogen bromide in acetic acid an amorphous free base hexapeptide ester was obtained. This compound gave the correct C, H, N analysis and contained the six amino acids in the correct ratio. The octapeptide was obtained by condensing this hexapeptide with carbobenzoxy-B-benzyl-L-aspartyl-nitro, L-arginine using the mixed anhydride method of condensation. This amorphous product was proven to be homogenous by chromatography in two solvent systems and upon hydrolysis yielded the eight amino acids in correct ratio. The five protecting groups were removed from the octapeptide by hydrogenolysis over palladium black catalyst. Biological assay of the free peptide indicated that it possessed less than 0.1 per cent of both pressor and oxytocic activity of the phenylalanine8 angiotensin. This suggests that the phenyl group is a point of attachment between angiotensin and its biological receptor site.

  • PDF

Facile Synthesis of Aldehyde-focal Fréchet Type Dendrons and Dendrimers via Staudinger/Aza-Wittig Reactions

  • Han, Seung-Choul;Jin, Sung-Ho;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3624-3628
    • /
    • 2011
  • Fr$\acute{e}$chet-type dendritic benzaldehydes were efficiently synthesized using 3,5-dihydroxybenzaldehyde as an aldehyde focal point functionalized unit by adding a generation to the existing dendron or direct oxidation of Fr$\acute{e}$chet-type dendritic benzyl alcohols. These dendritic benzaldehydes were applied for the construction of dendrimers containing secondary amines as connectors via Staudinger/aza-Wittig Reactions with ${\alpha}$,${\alpha}'$,-diazidop-xylene core.