• Title/Summary/Keyword: Beneficial soil bacteria

Search Result 44, Processing Time 0.032 seconds

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers (화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향)

  • Lee, Min-Kyoung;Lee, Gil-Seung;Yim, Woo-Jong;Hong, In-Soo;Palaniappan, Pitchai;Siddikee, Md. Ashaduzzaman;Boruah, Hari P. Deka;Madhaiyan, Munusamy;Ahn, Ki-Sup;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2009
  • Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

Suppression of Morningglory (Ipomoea Hederacea) Growth by Rhizobacteria and IAA-3-ACETIC Acid

  • Kim, Su-Jung
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.411-420
    • /
    • 2006
  • Indole-3-acetic acid (IAA) biosynthesis by bacteria occurs widely in rhizospheres. Bacterial species able to synthesize IAAmay be exploited for beneficial interactions in crop management systems. The objective of this study was to determine the response of ivyleaf morningglory (Ipomoea hederacea) seedlings to IAA and to an IAA-producing rhizobacterum, Bradyrhizobium japonicum isolate GD3. IAA solution and isolate GD3 suppression of seedling growth measured as radicle length and biomass depended on IAA concentration. Seedling radicle length was significantly reduced by ca. 29% with more than $1.0{\mu}M$ of IAA solution, compared to the control, 48 h after application. The cell concentration at 50% growth reduction ($GR_{50}$) of the seedling radicle was IAA production by isolate GD3 at $10^{4.82}\;cfu$, the cell concentration for 50% growth reduction ($GR_{50}$) of seedling radicle was 0.24 iM, which was much lower than the IAA solution concentration ($117.48{\mu}M$) required for $GR_{50}$. Therefore, excess IAA production by isolate GD3 may be more detrimental to morningglory radicle growth than standard IAA solution. Results confirmed involvement of IAA in suppressive effects of isolate GD3 on morning-glory seedlings grown in a hydroponic system.

  • PDF

Amelioration of non-irrigated stress and improvement of sweet pumpkin fruit quality by Kushneria konosiri endophytic bacteria

  • Sang Tae Kim;Mee Kyung Sang
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.539-549
    • /
    • 2023
  • This study examined the impact of two bacterial strains, H05E-12 and H05R-04, on alleviating non-irrigation-induced stress and its subsequent effects on the fruit productivity of sweet pumpkin plants. When subjected to non-irrigation-induced stress, the lipid peroxidation, proline, total phenol, and total soluble sugar content significantly decreased in plants treated with either H05E-12 or H05R-04 compared to the control. In a greenhouse experiment under non-irrigated conditions, H05E-12-treated plants exhibited higher stomatal conductance than the control, although there was no significant change in the soil plant analysis development(SPAD) value due to treatment. Upon re-watering, an increase in fruit diameter was observed in H05E-12-treated plants, and the L-ascorbic acid content in the fruit also showed a significant increase compared to the control. The H05E-12 strain was identified as Kushneria konosiri. To the best of our knowledge, this is the first report detailing the beneficial effects of K. konosiri on the alleviation of non-irrigation-induced stress and the promotion of plant growth in sweet pumpkin plants.

Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202

  • Bhattacharyya, Dipto;Duta, Swarnalee;Yu, Sang-Mi;Jeong, Sang Chul;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.286-296
    • /
    • 2018
  • Maintenance of a beneficial microbial community, especially in the rhizosphere, is indispensable for plant growth and agricultural sustainability. In this sense, plant growth-promoting rhizobacteria (PGPR) have been extensively studied for their role in plant growth promotion and disease resistance. However, the impact of introducing PGPR strains into rhizosphere microbial communities is still underexplored. We previously found that the Proteus vulgaris JBLS202 strain (JBLS202) promoted growth of Kimchi cabbage and altered the relative abundance of total bacteria and Pseudomonas spp. in the treated rhizosphere. To extend these findings, we used pyrosequencing to analyze the changes in bacterial communities in the rhizosphere of Kimchi cabbage after introduction of JBLS202. The alterations were also evaluated by taxon-specific realtime PCR (qPCR). The pyrosequencing data revealed an increase in total bacteria abundance, including specific groups such as Proteobacteria, Acidobacteria, and Actinobacteria, in the treated rhizosphere. Time-course qPCR analysis confirmed the increase in the abundance of Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. Furthermore, genes involved in nitrogen cycling were upregulated by JBLS202 treatment indicating changes in ecological function of the rhizosphere soil. Overall, these results indicate that introduction of JBLS202 alters both the composition and function of the rhizosphere bacterial community, which can have direct and indirect effects on plant growth. Therefore, we propose that long-term changes in bacterial composition and community-level function need to be considered for practical use of PGPRs.

Effect of Soil Microbial Fertilizers on Yield of Chinese Cabbage (Brassica campestris L.) (토양미생물제처리(土壤微生物劑處理)가 배추의 수량(收量)에 미치는 영향(影響))

  • Kim, Kyung-Je;Kim, Seog-Kyun
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.341-343
    • /
    • 1998
  • This study was carried out to investigate the effects of soil microbial fertilizers on yields of Chinese cabbage (Brassica campestris L.). Five microbial fertilizers, MPK+Husk+Palma, Husk+Palma, MPK+Compost, BLCS(Bio livestock cattle system) cattle dropping, and Tomi, were used. All of microbial fertilizers significantly increased yields of Chinese cabbage, except BLCS cattle dropping. MPK+Husk+Palma was the most effective than any other treatments. Chinese cabbage treated with Tomi showed higher concentrations of K, Ca, Mg, Fe, Mn, and Zn than Compost treatment. MPK+ Husk+Palma was high in concentrations of Mg and Mn. MPK+Compost was high in concentrations of K, Mg, and Na. In a chemical components of soil, concentrations of K and P was increased with Tomi treatment, however, the other concentrations of plant and soil chemical components were not different. In a microbial properties of soil, Tomi, Husk+Palma, and MPK+Husk+Palma treatments increased in the number of total bacteria and bacilli. Tomi treatment increased in the number of actinomycetes and fungi. The other microbial properties of soil showed no significant differences. It would be assumed that yield increase in Chinese cabbage might be due to the beneficial microbial properties, therefore, those would increase yields of Chinese cabbage.

  • PDF

Effect of Inoculation of Azospirillum brasilense and Methylobacterium oryzae on the Growth of Red Pepper Plant (고추의 생장에 미치는 Azospirillum brasilense 및 Methylobacterium oryzae 접종 효과)

  • Kim, Byoung-Ho;Sa, Tong-Min;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • BACKGROUND: Rhizosphere bacteria may improve plant growth and productivity both by supply nutrients and hormonal stimulation. Although many experiments have shown improvements in plant growth with inoculation of bacterial cultures to the rhizosphere, the main obstacle in the applications of plant growth promoting rhizobacteria in a large scale is the inconsistency of the results. We tested the growth promoting effects of Azospirillum and Methylobacterium strains on red pepper plant. METHODS AND RESULTS: Red pepper seedlings were grown for 25 days in a growth media inoculated with A. brasilense CW903 or M. oryzae CBMB20. The seedlings were transplanted and grown for 45 days in pots with soil in a greenhouse, at half the recommended level of fertilizer. Bacterial culture, $4.0{\times}10^9$ for A. brasilense CW903 and $5.8{\times}10^8$ CFU for M. oryzae CBMB20, was applied in root zone soil periodically every 10 days during the experiment. Inoculation of M. oryzae CBMB20 significantly increased the red pepper plant growth in terms of leaf number, height and mass of shoot, or root mass compared to uninoculated control plants. Although beneficial effects of A. brasilense on plant growth of many crops were observed, the growthpromoting effect of A. brasilense CW903 on red pepper plant was not found in this study. CONCLUSION(s): The factors responsible for the irregularities in plant growth promoting of rhizobacteria are difficult to elucidate. Extensive inoculation experiments in the greenhouse and in the field should enable us to define the factors critical to obtain successful application of plant growth promoting rhizobacteria.

Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

  • Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Kang, Sang-Mo;Adhikari, Bishnu;Imran, Muhammad;Jan, Rahmatullah;Kim, Kyung-Min;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.118-126
    • /
    • 2020
  • Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth's crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.

Canola Plant Growth Promotion by a Selected Plant Growth Promoting-Rhizobacteria, Burkholderia pyrrocinia Strain 13-1 in the Cold Condition (고활성 근권생육촉진균주 Burkholderia pyrrocinia 13-1에 의한 저온조건에서의 유채생육촉진)

  • Lee, Jae-Eun;Cho, Sang-Min;Cho, Young-Eun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.262-266
    • /
    • 2009
  • Plant growth-promoting rhizobacteria (PGPR) are beneficial native soil bacteria that colonize plant roots and result in increased plant growth. The objective of this study was to determine the plant growth promotion in canola plants by selected PGPR strain 13-1 under low temperature condition. The seed treatment of strain 13-1 was enhanced plant height and root elongation on canola plant at low temperature condition. This result determined that a selected strain of PGPR can enhance plant growth and root propagation under extremely low temperature conditions. Thus, this PGPR strain extends their role on plant growth promotion on canola until low temperature condition for practical applications.