• 제목/요약/키워드: Bending-under-tension

검색결과 141건 처리시간 0.023초

인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가 (Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load)

  • 손일선;정원석;이휘광;배동호
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

고강도 콘크리트와 고장력 철근을 적용한 쉴드 세그먼트의 역학적 거동에 대한 실험적 연구 (An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar)

  • 이규필;박영택;최순욱;배규진;장수호;강태성;이진섭
    • 한국터널지하공간학회 논문집
    • /
    • 제14권3호
    • /
    • pp.215-230
    • /
    • 2012
  • 본 연구에서는 세그먼트의 제작비용을 절감하기 위한 방안으로서, 설계강도가 60 MPa인 고강도 콘크리트와 항복강도가 600 MPa인 고장력 철근을 사용하여 철근량을 저감시킨 고강도 철근보강 세그먼트 시작품을 제작하였다. 이상과 같이 제작된 고강도 세그먼트와 기존 철근보강 세그먼트의 역학적 거동을 비교하기 위하여, 세그먼트의 실물 휨실험을 실시하였다. 실험결과, 철근량이 약 26%가 감소하였음에도 불구하고 고강도 철근보강 세그먼트의 파괴하중은 일반 철근보강 세그먼트보다 약 30% 크게 나타나 고강도 콘크리트와 고장력 철근으로 인해 세그먼트의 내하력이 크게 향상되었음을 확인하였다.

Stress analysis model for un-bonded umbilical cables

  • Chen, Xiqia;Fu, Shixiao;Song, Leijian;Zhong, Qian;Huang, Xiaoping
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.97-122
    • /
    • 2013
  • For the optimization design and strength evaluation of the umbilical cable, the calculation of cross section stress is of great importance and very time consuming. To calculate the cross section stress under combined tension and bending loads, a new integrated analytical model of umbilical cable is presented in this paper. Based on the Hook's law, the axial strain of helical components serves as the tensile stress. Considering the effects of friction between helical components, the bending stress is divided into elastic bending stress and friction stress. For the former, the elastic bending stress, the curvature of helical components is deduced; and for the latter, the shear stress before and after the slipping of helical components is determined. This new analytical model is validated by the experimental results of an umbilical cable. Further, this model is applied to estimate the extreme strength and fatigue life of the umbilical cable used in South China Sea.

휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구 (Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail)

  • 주용선;김낙경;김성규;박종식
    • 대한토목학회논문집
    • /
    • 제28권6C호
    • /
    • pp.331-338
    • /
    • 2008
  • 기존 쏘일네일사면 설계법들은 보강재, 주변지반 또는 이들의 상호작용에 대하여 각기 다른 가정들을 적용하고 있다. 다수의 방법에서는 단순하게 쏘일네일의 인장력만을 고려하여 이를 외력으로 적용하여 안정해석을 하고 있다. 하지만 쏘일네일사면은 사면을 구성하는 지반에 비하여 상대적으로 큰 휨저항성을 가지므로 쏘일네일의 휨강성을 고려한 안정해석법이 보다 현실적이고 공학적인 설계이다. 본 논문에서는 쏘일네일사면 설계시 쏘일네일의 휨저항성을 고려하며 이때 지반의 극한수평지지력에 따른 변화를 확인하고 이를 이용하여 수정된 FHWA 쏘일네일사면 설계법을 제안한다.

Optimal area for rectangular isolated footings considering that contact surface works partially to compression

  • Vela-Moreno, Victor Bonifacio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Martinez-Aguilar, Carmela
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.561-573
    • /
    • 2022
  • This paper presents a new model to obtain the minimum area of the contact surface for rectangular isolated footings, considering that the contact surface works partially to compression (a part of the contact surface of the footing is subjected to compression and the other is not in compression or tension). The methodology is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My". This document presents the simplified and precise equations of the four possible cases of footing subjected to uniaxial bending and five possible cases of footing subjected to biaxial bending. The current model considers the contact area of the footing that works totally in compression, and other models consider the contact area that works partially under compression and these are developed by very complex iterative processes. Numerical examples are presented to obtain the minimum area of rectangular footings under an axial load and moments in two directions, and the results are compared with those of other authors. The results show that the new model presents smaller areas than the other authors presented.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究) (A Study on the Bond Behavior of Reinforced Concrete Beam)

  • 이봉학;홍창우;이주형;김동호
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시 (Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings)

  • 류호완;한재준;김윤재
    • 대한기계학회논문집A
    • /
    • 제39권5호
    • /
    • pp.453-460
    • /
    • 2015
  • 후쿠시마 원전 사고 이후로 원자력 발전 플랜트의 배관 시스템에 가해지는 비틀림 하중의 영향에 대한 연구가 여러 연구자들에 의해서 수행되었다. 발전 플랜트의 원주방향 균열을 포함한 배관은 정상운전 조건이나 갑자기 발생한 사고에 의해서 굽힘과 비틀림과 같은 하중을 받을 수 있다. ASME 코드에서는 균열 배관의 구조건전성 확보를 위해서 한계하중 기법을 사용해서 완전소성 파단에 대한 결함평가를 제공한다. 최근 개정된 코드에 따르면, 복합하중은 막응력과 굽힘 응력만을 포함하고 있다. 실제로 운전 환경에서 비틀림 하중이 가해질 수 있음에도 불구하고, 비틀림 하중을 평가하는 방법론에 대해서는 언급하지 않았다. 본 논문에서는 한계하중 분석을 기반으로 원주방향 균열 존재하는 배관에 단순 굽힘과 단순 비틀림, 인장을 포함한 굽힘 비틀림 복합하중이 가해질 경우에 대한 유한요소해석 결과를 포함하고 있다. 전단면 완전항복 기준을 만족하는 한계하중 이론해를 제안하고 유한요소해석을 통해서 이를 검증하였다.