• Title/Summary/Keyword: Bending-moment

Search Result 1,339, Processing Time 0.027 seconds

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section (이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 steel plate girder under uniform bending moment was estimated by the nonlinear analysis. Doubly symmetric sections with slender, noncompact and compact webs were considered and the LTB strength in the inelastic range was estimated by taking initial imperfection and residual stress into account. For the numerical analysis, single-panel model and three-panel model were considered and analysis of SM490 steel plate girder was performed to judge the validity of the constructed models by comparing the results with AASHTO, AISC, Eurocode and KHBDC(LSD) codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was acknowledged that the current codes can be applied to HSB800 girders with doubly symmetric section in the inelastic LTB range.

Structural Integrity of Small Wind Turbine Composite Blade Using Structural Test and Finite Element Analysis (구조시험 및 유한요소해석을 통한 소형풍력발전용 복합재 블레이드의 구조 안전성 평가)

  • Jang, Yun-Jung;Lee, Jang-Ho;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1087-1094
    • /
    • 2012
  • This study deals with structural analysis and testing under loading conditions calculated by computational fluid dynamics for a small composite blade that is utilized in a dual rotor wind turbine system. First, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the bending moment distribution along the blade length in previous research. Then, full-scale structural tests were conducted according to IEC 61400-2 to evaluate the structural integrity of the composite blade. These results were compared with finite element analysis to identify the accuracy of the structural analysis. Based on these results, it was revealed that the existing blade has a very high safety margin. Then, the layup of the composite blade was redesigned and analyzed using finite element analysis to achieve structural integrity and economic efficiency.

Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness (두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.961-970
    • /
    • 2012
  • The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Modification of Response Displacement Method for Seismic Design of Underground Structures under Domestic Conditions (국내 특성이 반영된 지하구조물의 내진설계를 위한 수정응답변위법)

  • 김명철;김영일;조우연;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 2004
  • In this study. the Modified Response Displacement Method(MRDM) for seismic design of underground box-type structures is proposed. Firstly, to investigate the applicability of the conventional RDM, various parametric studies are performed according to buried depth and soil conditions. Results from the conventional RDM are compared with those of time history analysis in terms of the maximum bending moment and relative displacement. The comparison shows that the velocity response spectrum and the determination method of foundation modulus which significantly influence the accuracy of RDM should be modified. Thus, the modified velocity response spectrum and the new determination method of foundation modulus are proposed under consideration of domestic conditions. In order to demonstrate the accuracy and validity of the proposed MRDM numerical analyses are performed according to different parameters such as depth of base rock, height and width of box, buried depth and soil condition. the comparison with the results of the time history analysis verifies the feasibility of the proposed MRDM for the seismic analysis.

An Analysis of the Springing Phenomenon of a Ship Advancing in Waves (파랑 중에 전진하는 선박에 대한 스프링잉 현상 해석)

  • H.Y. Lee;H. Shin;H.S. Park;J.H. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • The very large vessels like VLCC and container ship have been built recently and those vessels have smaller structural strength in comparison with the other convectional skips. As a result the fatigue destruction of upper deck occurs a frequently due to the springing phenomenon at the encountering frequencies. In this study, the hydrodynamic loads are calculated by three-dimensional source distribution method with the translating and pulsating Green function. A ship is longitudinally divided into 23 sections and the added mass, damping and hydrodynamic force of each section is calculated. focusing only on the vertical motion. Stiffness matrix is calculated by the Euler beam theory. The calculation is carried out for Esso Osaka.

  • PDF

Analysis of Integration Factor Effect in Dynamic-Structure-Fluid-Heat Coupled Time Transient Staggered Integration Scheme for Morton Effect Analysis (모튼이펙트 해석을 위한 동역학-구조-유체-열전달 시간과도응답 연성해석 시차적분법에서 시상수 효과 분석)

  • Suh, Junho;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • The present study focuses on the effect of staggered integration factor (SIF) on Morton effect simulation results. The Morton effect is a synchronous rotordynamic instability problem caused by the temperature differential across the journal in fluid film bearings. Convection and conduction of heat in the thin film displaces the hot spot, which is the hottest circumferential position in the thin film, from -20 to 40 degrees ahead of the high spot, where the minimum film clearance is experienced. The temperature differential across the journal causes a bending moment and the corresponding thermal bow in the rotating frame acts like a distributed synchronous excitation in the fixed frame. This thermal bow may cause increased vibrations and continued growth of the synchronous orbit into a limit cycle. The SIF is developed assuming that the response of the rotor-lubricant-bearing dynamic system is much quicker than that of the bearing-journal thermal system, and it is defined as the ratio between the simulation time of the thermal system and the rotor-spinning period. The use of the SIF is unavoidable for efficient computing. The value of the SIF is chosen empirically by the software users as a value between 100 and 400. However, the effect of the SIF on Morton effect simulation results has not been investigated. This research produces simulation results with different values of SIF.

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.