• 제목/요약/키워드: Bending tests

검색결과 1,075건 처리시간 0.023초

터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동-고사이클 피로균열의 전파특성- (Fatigue behavior of Cr-Mo-V steel at high temperature for turbines -Propagation characteristics of high cycle fatigue crack-)

  • 송삼홍;강명수
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.69-76
    • /
    • 1997
  • The rotating bending fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely sued in thermal power plant turbines, at various temperatures such as room temperature, 300 .deg. C, 425 .deg. C and 550 .deg. C. The characteristics of fatigue crack propagation were examined and analyzed by using fracture mechanics parameter. The plastic replica method was also applied in order to measure the crack length on the basis of serial observation of fatigue crack propagation behavior on the defected specimen surface. The fatigue crack propagation behavior of Cr-Mo-V steel was investigated within the frame work of elastic-plastic fracture mechanics. The propagation law of fatigue crack is obtained uniquely by using the term .sigma. $^{n}$ sub a/where .sigma. $_{a}$ is the service stress, a is the crack length and n is a constant. The values of constant n are nearly equal to 2.48, 2.60 and 8.61 at room temperature, 300 .deg. C and 425 .deg. C.

  • PDF

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

굴 패각 분말과 계란 껍데기 분말을 혼합한 모르타르의 휨·압축강도에 관한 연구 (A Study on the Flexural and Compressive Strength of Mortar Mixed with Oyster Shell Powder and Egg Shell Powder)

  • 김해나;신동욱;신종현;홍상훈;정의인;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.94-95
    • /
    • 2020
  • Oyster shells are characterized by coarse and coarse grains, but similar in strength to sand, and egg shells are fine grains but weak in strength. In terms of supply and demand of raw materials, oyster shells can be supplied only in limited periods and regions in winter and south coast of the year, but egg shells have the advantage of being able to supply and supply nationwide 365 days. This study aims to study the change in strength characteristics by mixing oyster shell powder and egg shell powder with the same particle size and mixing up to 150%. The conclusions of the flexural and compressive strength tests of mortar mixed with oyster shell powder and egg shell powder are as follows. The 7-day flexural and compressive strength with ESP added and the 3-day flexural and compressive strength with OSP added were similar, which is thought to be because the strength of OSP is higher than that of ESP.

  • PDF

Impact of litter on femur and tibial morphology, bone biomechanics, and leg health parameters in broiler chickens

  • Komal Khan;Mehmet Kaya;Evrim Dereli Fidan;Figen Sevil Kilimci
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1393-1402
    • /
    • 2023
  • Objective: In this study effects of three types of beddings on broiler leg health and bone biomechanics were evaluated. Methods: A total of 504 male chicks (Ross 308) were randomly placed on three beddings (4 replicates/group; 42 birds/pen), zeolite-added litter (ZL), plastic-grid flooring (PF), and wood shavings (WS). On day 42, chickens were weighed, slaughtered, and samples (bone, muscle, and drumstick) were collected. Bones were subjected to leg health tests, morphometric measurements, biomechanical testing, and ash analysis. Results: Broilers in PF and WS groups showed higher live weight than the ZL group (p<0.001), and the incidence of tibial dyschondroplasia (TD) and varus valgus deformity due to distal bending was significantly higher in PF (p<0.001). Multinomial logistic regression showed that bedding has a significant (p = 0.038) contribution toward the development of TD. Tibial strength (p = 0.040), drumstick width (p = 0.001), and total femur and epiphyseal ash contents (p = 0.044, 0.016) were higher in the ZL group. Chicken live weight was correlated with tibial length and weight (r = 0.762, 0.725). Conclusion: Flooring and the type of bedding material directly affect broiler bone length, strength and leg health. Plastic bedding improves the slaughter weight of chickens on the expense of leg deformities, and zeolite litter improves leg health and bone strength.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

탄소섬유시트의 전단부착강도에 관한 연구 (Adhesive Shear Strength of Carbon Fiber Sheet)

  • 김윤철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.109-116
    • /
    • 2008
  • 탄소섬유시트의 부착성능을 조사하는 방법으로써 중앙을 절단한 보 공시체를 이용한 휨 거동 형식의 시험기를 개발하여, 콘크리트의 압축강도를 변수로 정적 재하 실험을 실시하였다. 탄소섬유시트의 파단의 결과를 이용하여 이 시험기의 검증과 함께 전단부착강도의 산출식을 도출하려고 노력 하였다. 그 결과, 첫 번째로 새로운 형식의 시험기에 의한 부착강도시험의 타당성이 증명되었다. 두 번째는 CFS 표면 변형률의 결과로부터 구해진 전단부착강도는 2종류의 경향이 있음이 발견되었다. 그 데이터 중에서 비교적 안정성이 높은 전단부착강도의 평균치는 3.41MPa, 하한치는 2.11MPa이었다. 이번 실험에서는 콘크리트의 강도가 전단부착강도에 미치는 특별한 영향을 볼 수 없었다.