• Title/Summary/Keyword: Bending resistance

Search Result 693, Processing Time 0.024 seconds

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

A Study of Joining Method of BSCCO(2223) Tape (BSCCO(2223) 초전도 선재의 접합공정 연구)

  • 김정호;김중석;김태우;지붕기;주진호;나완수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 1999
  • we evaluated the effects of joining process such as contact method. shape of joined area and pressure on the electrical and mechanical properties of Bi-2223 superconducting tape, Specifically. the current capacity of the jointed tape was measured as a function of uniaxial pressure. and the thermal shock, bonding strength and the thermal of the tape were evaluated and correlated to the microstructural evolution. It was observed that the current capacity was significanrly dependent on the uniaxial pressure The jointed tape, fabricated with a pressure of 1,000-1,600 Mpa. showed the highest value of current capacity results from improvements in core density, contacting area and grain alignment, ect. In addition, the strength of jointed tape was measured to be 86 Mpa, which is about 88% of the unjoined ape's strength. The irreversible strain($\varepsilon$irrev) for the jointed tape was measured to be 0.1%, smaller than that of unjoined tape ($\varepsilon$irrev= 0.3%). The decrease in the strength and irreversible strain for jointed tape is believed to be due to the irregular geometry/morphology of the transition area of the tape.

  • PDF

High Resolution Electrodes Fabrication for OTFT Array by using Microcontact Printing and Room Temperature Process

  • Jo, Jeong-Dai;Choi, Ju-Hyuk;Kim, Kwang-Young;Lee, Eung-Sug;Esashi, Masayoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.186-189
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and room temperature process. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing process. The OTFT array with dielectric layer and organic active semiconductor layer formed at room temperature or at a temperature lower than $40^{\circ}C$. The microcontact printing process using SAM and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even submicron size, and reduced the fabrication process by 10 steps compared with photolithography. Since the process was done in room temperature, there was no pattern shrinkage, transformation, and bending problem appeared. Also, it was possible to improve electric field mobility, to decrease contact resistance, to increase close packing of molecules by SAM, and to reduce threshold voltage by using a big dielectric.

  • PDF

A Study on the Insulation and Electrical Degradation Properties of Heat Resistance Epoxy Powder for Busduct (부스닥트용 내열성 에폭시 분체도료의 절연 및 열화 특성 연구)

  • Kang, Cheolhwa;Park, Ji-Koon;Park, Jong-Kyu;Ju, Hyun-Don;Kim, Hyun-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.662-668
    • /
    • 2013
  • Reported here are results of the mechanical and electrical properties of both of intact and thermally degraded epoxy-coated copper busducts that are made by fluidized bed process. To elucidate and compare the properties mentioned above, electrical breakdown by thermal and water aging, v-t characteristic, bending test, impact test and cross cut test are carried out. Although the performance of electrical and mechanical properties are gradually decreased in increasing the severe conditions such as temperature, aging time, and so forth, sample C has a better performance in both mechanical and electrical properties.

Influence of Artificial Defect on Fatigue Limit in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철의 피로한도에 미치는 인공결함의 영향)

  • Kim, Min-Geon;Kim, Jin-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1922-1928
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the influence of artificial defects on fatigue limit in annealed and austempered ductile iron. Obtained main results are as follows : (1) Artificial defect(micro hole type, dia.<0.4 mm) on specimen surface did not bring about a obvious reduction of fatigue limit in austempered ductile iron(ADI) as compared with annealed ductile iron. (2) According to the investigation of $\sqrt{area}_c$ which is the critical defect size to crack initiation at artificial defect, $\sqrt{area}_c$ of ADI is larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. (3) One of the reasons for the low rate of crack initiation from artificial defect in ADI is that the resistance of matrix to crack initiation is higher than that of annealed ductile iron. (4) In case that the $\sqrt{area}$ of artificial defect and graphite nodule is the same, the rate of crack initiation from graphite nodule is higher than that from artificial defect. This reason is that the serious ruggedness around graphite nodule is formed by austempering treatment.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

Evaluation on Physical and Mechanical Properties of Wood Plastic Composites Treated under Ultraviolet Irradiation (자외선을 처리한 목재 플라스틱 복합재의 물리 및 역학적 성질 평가)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.428-434
    • /
    • 2015
  • In this study, we received each wood plastic composites (WPC) from three manufacturers. These WPCs were evaluated regarding their physical and mechanical properties of both before and after accelerated weathering by ultraviolet (UV) irradiation. The total time of exposure of the WPCs to UV irradiation was 1800 h. The water absorption, volumetric swelling and shrinkage of WPCs did not affected by UV irradiation. Among the mechanical properties, there was no significant differences in bending strength and screw withdrawal resistance of UV treated WPCs compared with those of reference WPCs. However, surface hardness of WPCs showed decrease under UV irradiation. Stereoscopic microscopy observation revealed deterioration of the surface layer polymer in all weathered WPCs by UV. Exposure of the WPCs to UV irradiation caused decomposition and disappearance of the polymer layer. From this result, we can estimate that damage of polymer by UV led to a decrease in the surface hardness of the WPCs. The wood flours retained original shape after accelerated weathering by UV irradiation.

An Experimental Study on the Fatigue Behavior of Steel-Concrete Composite Bridge Deck (강-콘크리트 합성 교량 바닥판의 피로거동에 대한 실험적 연구)

  • 심정욱;김상효;정연주;박휘립
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.499-504
    • /
    • 2003
  • Future bridge decks must have high load-resistance capacity as well as fatigue strength to withstand the increase in traffic loading and the increase in span length between girders due to the decrease in the number of main girders. Steel-concrete composite bridge decks may be proper deck types to satisfy such requirements. To promote the application of composite bridge decks, a rational process to predict and evaluate the fatigue behavior of steel concrete composite bridge deck is required. Various types of steel-concrete composite bridge decks have been developed in many countries. In this study, combining advantages of the existing composite deck types, a new type of composite bridge deck is proposed. An experimental study is performed to examine the fatigue behavior of the proposed composite bridge deck. This composite bridge deck consists of corrugated steel sheet, welded T-beams, stud-type shear connectors and reinforced concrete filler. The fatigue tests are conducted under four-point bending test with three different stress ranges in constant amplitude. The fatigue category of the fillet welding between corrugated steel sheet and the T-beam is evaluated based on the S-N data obtained from the experiment.

  • PDF