• 제목/요약/키워드: Bending Method

검색결과 2,697건 처리시간 0.036초

일체화 성형 서브프레임 개발을 위한 벤딩 공정의 영향성 연구 (A Study of Bending Process for Development of Subframe by Hydroforming)

  • 서창희;이우식;김헌영;임희택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.262-265
    • /
    • 2003
  • In the present study, subframe was developed using hydroforming technology. The manufacturing process for subframe consists of tube bending, pre-forming and hydroforming. The effects of bending process for manufacturing hydroformed subframe were researched. And the variables of bending process were studied by FEM simulation. The bending method is rotary draw bending that is the most popular, cost-effective bending method for thin walled tubes.

  • PDF

해저관로의 대변형 굽힘에 의한 소성 모멘트 추정 (Estimation of Plastic Bending Moment of Offshore Pipelines)

  • 이종현;최한석;이승건
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.21-26
    • /
    • 2003
  • The reel-lay method of submarine pipelines a continuous string of pipe coiled onto a reel. Assembly of this pipe that is string is accomplished onshore by welding, and nondestructive testing is carried out prior to coiling the pipe. The total length of pipes on the reel depends on the reel and pipe diameters. Pipeline installation is accomplished by uncoiling, straightening the pipe, and laying out the pipe string onto the seabed as the barge moves forward. Installation associated with coiling and uncoiling is related to the bending moment and strain relationship of the pipeline, A highgrade pipe material is required when the reel-lay method is used. This paper is concerned with the highly plastic bending moment of the pipeline, including the effect of ovality. Moment calculation in the pipe is accomplished by the numerical method, including the variable ovalities during the plastic bending of the pipe string. The new calculation method of the high plastic bending moment was applied to the reel-lay method.

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

원형으로 굽은 광도파로의 low bending loss를 위한 trench 구조설계: 원통좌표계 FD-BPM (A Trench Structure for Low Bending Loss of Bent Optical Waveguides)

  • 한영진;김창민
    • 한국광학회지
    • /
    • 제6권4호
    • /
    • pp.373-378
    • /
    • 1995
  • 원통좌표계에서의 FD-BPM(finite difference-beam propagation method)을 이용하여 굽은 광도파로의 bending loss를 계산하였다. Bending loss를 최소화하기 위해 trench구조를 적용하였으며 다음의 세가지 측면에서 해석하였다. 1)trench구조가 없을때 곡률반경에 따른 bending loss, 2)폭과 위치가 일정한 trench구조가 있을때 곡률반경과 굴절율차에 따른 bending loss, 3)trench의 위치가 일정할 때 trench의 폭에 따른 bending loss를 계산하였다.

  • PDF

컨테이너 운반선 해치-커버 제작시 전 굽힘 변형 거동에 관한 연구 (Behavior of Global Bending Distortion of Hatch-cover in Container Carrier during Fabrication Process)

  • 이동주;김경규;신상범
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.41-48
    • /
    • 2010
  • The purpose of this study is to establish the control method of the global bending distortion caused by fabrication process of hatch-cover in a container ship. In order to do it, the transitional behavior of global bending distortion in the deck of hatch-cover during fabrication process was measured by 3-dimensional measuring instrument. From the results, the principal factor controlling the global bending distortion was identified as the bending moment associated with the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the change of the centroid axis of hatch-cover in each fabrication process. Therefore, in this study, with the predictive equations of the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the simplified thermo elastic method, the predictive method for the global bending distortion was established and verified by comparing with the measured result. Based on the results, the amount of reverse bending distortion of main stiffeners was determined to prevent the global bending distortion of hatch-cover.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

등가 모델을 이용한 3점 굽힘 하중을 받는 딤플형 금속 샌드위치판재의 효율적 해석 (Efficient FE-Analysis Method with Equivalent Models for Metallic Sandwich Plates with Inner Dimpled Shell Subject to 3-Point Bending)

  • 성대용;정창균;윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.130-133
    • /
    • 2005
  • Efficient finite element method has been introduced for metallic sandwich plates subject to 3-point bending. A full model 3-point bending FE-analysis shows that plastic behavior of inner structures appears only at the load point. So, Unit structures of sandwich plates are defined to numerically calculate the bending stiffness with recurrent boundary condition of pure bending. And then equivalent models with same bending stiffness and strength of full models are designed analytically. It is demonstrated that results of both models are almost same and FE analysis method with equivalent models can reduce analysis time effectively.

  • PDF

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화 (Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell)

  • 이창환;류승민;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF