• Title/Summary/Keyword: Bench blasting

Search Result 45, Processing Time 0.022 seconds

A Study on the Improvement of Surface Blasting Method in Pasir Coal Mine (파시르 탄광에서의 채탄발파공법에 대한 문제점 분석 및 개선방안 연구)

  • Choi Byung-Hee;Ryu Dong-Woo;SunWoo Choon
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • The typical blasting method adopted in Pasir Coal Mine is a surface blasting technique with a single free face. It means that there is only one free face, which is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In addition, the method also has the problem of lowering the blast efficiency compared to other methods such as bench blasting methods or ones with more than two free faces. In this respect, a project was launched to develop a new blasting method that is suitable for controling the ground vibration and enhancing the blast efficiency. As a part of the project, authors investigated the current blasting method as well as the overall pit developing process in the mine, and established some important guidelines that should be observed during the whole development process. This paper presents the details of the typical blasting pattern and the pit developing method in the mine, and suggests the guidelines determined from the results of the observations.

A Study on Development of Rock Blasting Design Program (암 발파설계 프로그램 개발에 관한 연구)

  • 강추원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.223-228
    • /
    • 2000
  • In this study, RFD(Rock Blasting Design) program was developed to perform easily on plans of rock blasting. This program has abilities as follows, that is. the test blasting plan, the bench blasting plan, and the blasting vibration analysis. The value of geological property and blasting constants was offered by database, input value of variety constants repeatedly is planned out, faster and easier. And a value of input constant may be used by user for necessity.

  • PDF

A Study on Development of Rock Blasting Design Program (암 발파설계 프로그램 개발에 관한 연구)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.469-474
    • /
    • 2000
  • In this study, RBD(Rock Blasting Design) program was developed to perform easily on plans of rock blasting. This program has abilities as follows, that is, the test blasting plan, the bench blasting plan, and the blasting vibration analysis. The value of geological property and blasting constants was offered by database, input value of variety constants repeatedly is planned out, faster and easier. And a value of input constant may be used by user for necessity.

  • PDF

On the Rock Fragmentation with Plasma Blasting (플라즈마 장비의 발파공법)

  • 이경운
    • Explosives and Blasting
    • /
    • v.17 no.2
    • /
    • pp.19-35
    • /
    • 1999
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method controlling of flying rocks and ground vibrations, when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmental impacts. The fragmentation energy level is evaluated by numerical simulation using PFC for various drill hole patterns and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a 2-3 ㎥ granite boulder or 1.5m height bench face. Measurements are carried out to get the ground vibration level and propagation equation, so that control of the blasting operations can be performed more precisely and safely.

  • PDF

Rock of Fragmentation with Plasma Blasting Method (프라즈마장비의 발파공법)

  • 이경운
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method in controlling of flying rocks and ground vibrations when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmental impacts. The fragmentation energy level is evaluated by numerical simulation using PFC for various drill hole pattern and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a $2-3m^3$ granite boulder or 1.5m height bench face. Measurements are carried out to get the ground vibration level and propagation equation. So that the control of the blasting operations can be performed more precisely and safely.

  • PDF

Analysis of Energy and Ground Vibration of Plasma Blasting (플라즈마 발파의 폭력과 지반진동특성)

  • 이경운;박철환;신중호;류창하
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 1997
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method in controlling of flying rocks and ground vibrations, when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmnetal impacts. The fragmentation energy level is evaluated by numerical simulation using PFC-2D for various drill hole pattern and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a 2~3 ㎥ granite boulder or 1.5 m height bench face. Measurements are carried out to get the ground vibration level and propagation equation, so that the control of the blasting operations can be performed more precisely and safely.

  • PDF

Standardization of Cautious blasting (정밀발파의 표준화)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.3
    • /
    • pp.3-13
    • /
    • 1990
  • First ot of all, under given condition such as bit gage of 36mm Drill bit with right class of jack-leg-experimental test carried out from two face of Bench, firing of each hole brought 90 degree Angle face and them measured length of Burden and charged ammount of powder as following. $ca=\frac{A}{SW}$ A=Activated Area A=nd i=m S=Peripheral length of charged, room Ca=Rock Coeffiecency d: di=Hole diameter When constructed subway of Seoul in 1980 the blasting works increased complaint of ground vibration, in order to prevent the damage to structures. Some empirical equations were made as follows on condition with Jackleg Drill (Bit Gage 36mm) and within 30 meter distance between blasting site and structures. $V=K(D/W)^{-n}$ N=1.60 - 1.78 K= 48 - 138 Project is one of contineous works to above a determination of empirical equation on the cautious blasting vibration with Crawler Drill (70-75mm) in long distance. $V=41(D/\sqrt[3]{W})^{-1.41}$ $30m\le{D}\le{100m}$ $V=124(D/\sqrt[3]{W})^{-1.66}$ $100m\le{D}\le{285m}$.

  • PDF

Slope Stability Assessment and Factor Analysis of Surface Mines due to Blasting (발파로 인한 노천광산 사면안정성 평가 및 인자분석)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.98-107
    • /
    • 2020
  • In surface mining, it is very important to create a mining area for economical mining. This study examined the contribution of design factors on slope stability with different slope design and blasting conditions. The design factors were the properties of the rock, the slope angle and the bench height, and the blasting conditions were reflected at different explosive weight and distances. The safety factor of slope was calculated by shear strength reduction method through 3D modeling, and the contribution rate of rock slope was 94.8%, which is relatively higher than other design factors, slope angle 0.89%, bench height 0.58%, and blasting It is shown that it affects about 3.73%, and it can be seen that blasting at a close distance can affect the stability of the slope.

A Case Study of Underwater Blasting (수중발파 사례 연구)

  • 정민수;박종호;송영석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2004
  • There are two major types of underwater blasting at Korea, bridges and harbor construction work. Pier blasting for lay the foundation bridges construction is used dry excavation working (drilling and charging) after pump out water and then fire pump in water that is same as bench blasting. In contrast, underwater blasting for harbor construction and increase of harbor load depth is used to barge with digging equipment that is in oder to drilling on the surface and blasting work(charge, hook-up) under water. Thus, there are need to special concern such as charge method and hook-up method different from tunnel blasting work and bench blasting work. If do not use special concern breaks out dead pressure and mis fire because of there are so many difficult condition such as water pressure, obstruct field of vision. In this study underwater blasting at Busan Harbor Construction have consider with special concern that is plastic pipe charge method used to MegaMITE I and specialized buoy hook- up method make far initial system detonate on the surface used to TLD. The results is designed blast pattern charge per delay effect an inspection of verify between predict velocity and measure velocity. minimized break out mis fire consideration charge method, hook up method. According to result best underwater blasting design is 105mm drilling dia, MeGAMITE II, HiNLL Plus(non electric detonator).