• 제목/요약/키워드: Belief propagation

검색결과 96건 처리시간 0.02초

신뢰확산 알고리듬을 이용한 선 그룹화 기반 스테레오 정합 (Stereo Matching using Belief Propagation with Line Grouping)

  • 김봉겸;임재권
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.1-6
    • /
    • 2005
  • 변이 영상을 마코브 랜덤필드(MRF)로 모델링한 마코브 네트워크에서 신뢰확산 알고리듬은 각 화소에 대응되는 노드들 사이에 메시지를 전달하는 방식으로 이루어진다. 최초 메시지는 알고리듬의 반복을 통해 특정한 값으로 수렴하게 되며, 수렴된 값을 얻기 위해서는 많은 알고리듬의 반복이 필요하다. 본 논문에서는 알고리듬의 반복을 줄이기 위해 영상내 물체들을 선들의 조합 구성으로 보고 각각의 선들은 같은 메시지를 갖는 노드들의 집합으로 간주하여 기존의 신뢰확산 알고리듬을 단순화하였다.

압축 센싱 신호 복구를 위한 AMP(Approximate Message Passing) 알고리즘 소개 및 성능 분석 (Introduction and Performance Analysis of Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery)

  • 백형호;강재욱;김기선;이흥노
    • 한국통신학회논문지
    • /
    • 제38C권11호
    • /
    • pp.1029-1043
    • /
    • 2013
  • CS(Compressed Sensing)는 오늘날 신호 처리 영역에서 많은 주목을 받고 있는 이론 중의 하나이다. 이 CS 분야에서 효과적인 복구 알고리즘을 설계하는 것은 가장 큰 도전적 연구 중의 하나로 인식되고 있다. 이에 따라 다양한 복구 알고리즘이 많은 문헌을 통해서 제안 되었으며 최근에 Maleki와 Donoho에 의해 제안된 AMP(Approximation Message Passing) 알고리즘은 기존에 제시된 알고리즘에 비해 간단한 구조를 가지고 있지만 좋은 성능을 보여줌으로써 상당한 주목을 받고 있다. 기존의 (BP) Belief Propagation 알고리즘은 오직 희소(Sparse) 센싱 행렬에서만 좋은 성능을 보여 준 것에 반해, AMP 알고리즘은 밀집(Dense) 센싱 행렬에 기초를 둔 Belief Propagation 알고리즘임에도 불구하고 이와 비슷한 성능을 보여준다. 본 논문은 다양한 영역에서 AMP 알고리즘이 적용되기 위하여 이에 대한 지침 및 기존의 고전적 Message Passing 알고리즘과의 관계에 대해 분석하였다. 또한 기존의 알고리즘과의 비교 분석을 통해 AMP 알고리즘의 우수성을 제시하였다.

GE 삼각화를 이용한 효율적인 LT 복호 기법 연구 (A Study on the Efficient LT Decoding Scheme using GE Triangularization)

  • 정호영
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.57-62
    • /
    • 2011
  • 본 논문에서는 GE 삼각 화를 이용해 LT 부호의 복호 과정을 수행함으로써 복잡도와 오버헤드 성능을 모두 개선한 효율적인 복호 방식을 제안하였다. BP 복호 방식은 간단하고 빠르기는 하나 부호 블록이 짧을수록 복호하는데 큰 오버헤드가 필요하다는 단점이 있고, OFG 알고리즘은 오버헤드는 작으나 연산 양이 많다. 시뮬레이션 결과 제안한 복호 방식은 OFG 알고리즘에 비해 연산 양이 5배 이상 감소되었으며 오버헤드는 1~5%의 적은 양을 보였다.

멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능 (Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter)

  • 황유민;이선의;이상운;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.104-110
    • /
    • 2014
  • 본 논문에서는 무인항공기인 방송용 멀티콥터를 이용한 Full-HD급 이상 화질의 이미지를 효율적으로 전송하기 위해 이미지 압축 센싱 기법을 적용하고, Sparse 신호의 효율적 복원을 위해 Turbo 알고리즘과 Markov chain Monte Carlo (MCMC) 알고리즘의 복원 성능을 모의실험을 통해 비교 분석하였다. 제안된 복원 기법은 압축 센싱에 기반하여 데이터 용량을 줄이고 빠르고 오류 없는 원신호 복원에 중점을 두었다. 다수의 이미지 파일로 모의실험을 진행한 결과 Loopy belief propagation(BP) 기반의 Turbo 복원 알고리즘이 Gibbs sampling기반 알고리즘을 수행하는 MCMC 알고리즘 보다 평균 복원 연산 시간, NMSE 값에서 우수하여 보다 효율적인 복원 방법으로 생각된다.

Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications

  • Dinesh Kumar Devadoss;Shantha Selvakumari Ramapackiam
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.485-500
    • /
    • 2024
  • A hardware architecture is presented to decode (N, K) polar codes based on a low-density parity-check code-like decoding method. By applying suitable pruning techniques to the dense graph of the polar code, the decoder architectures are optimized using fewer check nodes (CN) and variable nodes (VN). Pipelining is introduced in the CN and VN architectures, reducing the critical path delay. Latency is reduced further by a fully parallelized, single-stage architecture compared with the log N stages in the conventional belief propagation (BP) decoder. The designed decoder for short-to-intermediate code lengths was implemented using the Virtex-7 field-programmable gate array (FPGA). It achieved a throughput of 2.44 Gbps, which is four times and 1.4 times higher than those of the fast-simplified successive cancellation and combinational decoders, respectively. The proposed decoder for the (1024, 512) polar code yielded a negligible bit error rate of 10-4 at 2.7 Eb/No (dB). It converged faster than the BP decoding scheme on a dense parity-check matrix. Moreover, the proposed decoder is also implemented using the Xilinx ultra-scale FPGA and verified with the fifth generation new radio physical downlink control channel specification. The superior error-correcting performance and better hardware efficiency makes our decoder a suitable alternative to the successive cancellation list decoders used in 5G wireless communication.

모바일 스테레오 비전 시스템을 위한 다양한 스테레오 정합 기법의 오차율 비교 (Comparison of error rates of various stereo matching methods for mobile stereo vision systems)

  • 이주영;이광엽
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.686-692
    • /
    • 2022
  • 본 논문에서는 스테레오 영상정합을 위하여 개선된 영역기반, 에너지 기반 알고리즘, 학습기반 구조의 정합 오류율을 비교하였다. 영역기반으로 census transform(CT), 에너지 기반으로 belief propagation(BP) 알고리즘을 선정하였다. 기존 알고리즘을 개선하고 모바일 시스템에서 스테레오 영상정합에 활용가능 하도록 임베디드 프로세서 환경에서 구현하였다. 비교 대상이 되는 학습기반의 경우에 도 적은 규모의 파라메터를 활용하는 신경망 구조를 채택하였다. 세 가지 정합방법의 오류율 비교를 위해 테스트 이미지로 Middlebury 데이터 세트 가운데 Tsukuba를 선정하고 정합 성능의 정확한 비교를 위해 비폐색, 불연속, 시차 오류율 등으로 세분화하였다. 실험 결과 CT 매칭의 오차율은 기존 알고리즘과 수정된 알고리즘으로 비교하였을 때 약 11% 성능 개선되었다. BP 매칭은 오류율에서 기존 CT 에 비하여 약 87% 우수하였다. 신경망을 이용한 학습기반과 비교 하였을 때 BP 매칭이 약 31% 우수함을 보였다.

Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류 (Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network)

  • 이태주;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

이진 소실 채널 복호를 이용한 신뢰기반 LDPC 반복 복호 (Iterative Reliability-based Decoding of LDPC Codes with Low Complexity BEC Decoding)

  • 김상효
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.14-15
    • /
    • 2008
  • In this paper, a new iterative decoding of LDPC codes is proposed. The decoding is based on the posteriori probability of each belief propagation (BP) decoding and an additional postprocessing, that is, erasure decoding of LDPC codes. It turned out that the new method consistently improves the decoding performance on various classes of LDPC codes. For example it removes the error floor of Margulis codes effectively.

  • PDF

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2000년도 추계공동학술대회논문집
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

깊이 불연속 정보를 이용한 저해상도 깊이 영상의 업샘플링 방법 (Low-Resolution Depth Map Upsampling Method Using Depth-Discontinuity Information)

  • 강윤석;호요성
    • 한국통신학회논문지
    • /
    • 제38C권10호
    • /
    • pp.875-880
    • /
    • 2013
  • 시청자에게 입체감과 몰입감을 줄 수 있는 3차원 영상의 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 장면의 깊이를 측정하는 깊이 센서에서 획득된 깊이 영상은 매우 작은 해상도를 가진다. 따라서 색상 영상과 함께 3차원 영상 제작에 이러한 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 기술이 필요하다. 본 논문에서는 깊이 불연속 정보를 이용하여 저해상도 깊이 영상을 업샘플링하는 방법을 설명한다. 깊이 영상을 업샘플링할 때 가장 민감하게 다루어야 할 깊이 불연속 부분을 고해상도 색상과 저해상도 깊이 영상으로부터 찾아낸다. 그리고 깊이 불연속 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 모델링하고, 신뢰 확산(belief propagation) 방법을 이용하여 해상도가 확대된 깊이 영상을 획득한다. 제안하는 방법은 필터 기반이나 에너지 함수 기반의 다른 방법들보다 우수한 성능을 나타내었다.