The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.10C
/
pp.936-941
/
2003
Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC) codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief propagation model can be approximated well by Gaussian random variables, a modified and simplified version of density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density evolution of LDPC codes as an alternative decoding algorithm in [3]. Next question is how the min-sum algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well matched to the simulation results.
Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.
Most of the new religions derived from Jeungsan have claimed that Jeungsan's religious thought reproduced Dangun [檀君] Thought in its original form. However, Daesoon Jinrihoe is the only religious order out of the many new religions within the Jeungsan lineage, which has constantly kept its distance from Dangun Thought since 1909 during the earliest period of proto-Daesoon Jinrihoe. Even a mere trace of Dangun cannot be found in the subject of faith or the doctrinal system of Daesoon Jinrihoe. In this context, this study aims to examine possible connections between Daesoon Thought and Dangun Thought in order to determine why other Jeungsanist religions frequently exhibit Dangunist features. Specifically, a major part of this study will be devoted to comparing and analyzing the narrative structure of Daesoon Thought and Dangun Thought as well as their respective motifs. In fact, Jeungsan does not seem to have ever mentioned Dangun in his recorded teachings, therefore, after his passing into the Heaven, most of the religious orders including Daesoon Jinrihoe derived from him did not pay any attention to Dangun Thought for almost for 40 years. These orders did not originally perceive Dangun as an object of belief. After Korea's liberation, Dangun became widely accepted as a pivotal role among the Korean people. As Dangun-nationalism claimed to unify Koreans as one great Korean ethnic society, the religious orders of Jeungsan lineage also climbed aboard this creed and their faiths or doctrines were acculturated to reflect this change. The reason for this has been attributed to following modern trends to increase success in propagation. In the meantime, Daesoon Jinrihoe was the only order that did not accept Dangun-nationalism because it was not a teaching given by the order's founder. And the two systems of thought have more dissimilarity than parallelism in terms of philosophical ideology. These seem to be the main reasons why Daesoon Jinrihoe did not adopt Dangun into its doctrine or belief system.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.5
/
pp.462-468
/
2017
In this paper IoT/WSN(Internet of Things/Wireless Sensor Network) has been modeled with a random geometric graph. And a performance of the decentralized code for the efficient storage of data which is generated from WSN has been analyzed. WSN with n=100 or 200 has been modeled as a random geometric graph and has been simulated for their performance analysis. When the number of the total nodes of WSN is n=100 or 200, the successful decoding probability as decoding ratio ${\eta}$ depends more on the number of source nodes k rather than the number of nodes n. Especially, from the simulation results we can see that the successful decoding rate depends greatly on k value than n value and the successful decoding rate was above 70% when $${\eta}{\leq_-}2.0$$. We showed that the number of operations of BP(belief propagation) decoding scheme increased exponentially with k value from the simulation of the number of operations as a ${\eta}$. This is probably because the length of the LT code becomes longer as the number of source nodes increases and thus the decoding computation amount increases greatly.
Kim, Chul-Seung;Kim, Min-Hyuk;Park, Tae-Doo;Jung, Ji-Won
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.12
/
pp.2783-2790
/
2010
In this paper, we first review LDPC codes in general and a belief propagation algorithm that works in logarithm domain. LDPC codes, which is chosen 802.11n for wireless local access network(WLAN) standard, require a large number of computation due to large size of coded block and iteration. Therefore, we presented three kinds of low computational algorithms for LDPC codes. First, sequential decoding with partial group is proposed. It has the same H/W complexity, and fewer number of iterations are required with the same performance in comparison with conventional decoder algorithm. Secondly, we have apply early stop algorithm. This method reduces number of unnecessary iterations. Third, early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Through the simulation, we knew that the iteration number are reduced by half using subset algorithm and early stop algorithm is reduced more than one iteration and computational complexity of early detected method is about 30% offs in case of check node update, 94% offs in case of check node update compared to conventional scheme. The LDPC decoder have been implemented in Xilinx System Generator and targeted to a Xilinx Virtx5-xc5vlx155t FPGA. When three algorithms are used, amount of device is about 45% off and the decoding speed is about two times faster than convectional scheme.
This study focuses on examining 'the Supreme God and Celestial Worthy of the Ninth Heaven Who Spreads the Sound of the Thunder Corresponding to Primordial Origin', which Daesoon Jinrihoe believes in as the highest divinity. The name of this divinity was first found in Chinese Daoist scriptures. This study starts by considering the global propagation of virtue and then research connected to this topic. There are two alternative names for this divinity in relation to his human avatar, Kang Jeungsan, the subject of faith in Daesoon Jinrihoe. One is 'the Lord God of Great Creation in the Ninth Heaven' meaning the divinity before assuming a human avatar, and the other is 'the Celestial Worthy of Universal Transformation' the same divinity after he discarded his human avatar and returned to his celestial post. To understand how the belief system of Daesoon Jinrihoe differs from that of Daoism, it is necessary to study the divinity's change from being 'the Lord God of Great Creation in the Ninth Heaven' to becoming 'the Celestial Worthy of Universal Transformation'. If this distinction is not made clear, it brings about confusing arguments concerning the term 'Supreme God (Sangje)' as used in Daoism and Daesoon Jinrihoe. In order to offer a specific explanation, this study suggests three possible directions. The first hypothesis is that although these two names, 'the Celestial Worthy of the Ninth Heaven Who Spreads the Sound of the Thunder Corresponding to Primordial Origin' from Daoism and 'the Supreme God of the Ninth Heaven Who Spreads the Sound of the Thunder Corresponding to Primordial Origin' from Daesoon Jinrihoe, are similar, they actually have nothing to do with one another. The second hypothesis is that they are in fact the same divinity. Lastly, the third hypothesis is that they are closely connected, however, the former (the Celestial Worthy of the Ninth Heaven Who Spreads the Sound of the Thunder Corresponding to Primordial Origin) is a position needed to fulfill the mission of Jeungsan, whereas the latter (the Supreme God of the Ninth Heaven Who Spreads the Sound of the Thunder Corresponding to Primordial Origin) is a name received after the human avatar passes and the deity returns to the Noebu, 'the department of lightning'. These hypotheses face certain problems such as arbitrary mixing, the need for the theoretical clarity, and argumental weakness. Therefore, by leaving some unresolved questions, this study encourages future follow-up studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.