DOI QR코드

DOI QR Code

A Performance Analysis of Distributed Storage Codes for RGG/WSN

RGG/WSN을 위한 분산 저장 부호의 성능 분석

  • Cheong, Ho-Young (Department of Information and Communication Engineering, Namseoul University)
  • Received : 2017.10.14
  • Accepted : 2017.10.17
  • Published : 2017.10.30

Abstract

In this paper IoT/WSN(Internet of Things/Wireless Sensor Network) has been modeled with a random geometric graph. And a performance of the decentralized code for the efficient storage of data which is generated from WSN has been analyzed. WSN with n=100 or 200 has been modeled as a random geometric graph and has been simulated for their performance analysis. When the number of the total nodes of WSN is n=100 or 200, the successful decoding probability as decoding ratio ${\eta}$ depends more on the number of source nodes k rather than the number of nodes n. Especially, from the simulation results we can see that the successful decoding rate depends greatly on k value than n value and the successful decoding rate was above 70% when $${\eta}{\leq_-}2.0$$. We showed that the number of operations of BP(belief propagation) decoding scheme increased exponentially with k value from the simulation of the number of operations as a ${\eta}$. This is probably because the length of the LT code becomes longer as the number of source nodes increases and thus the decoding computation amount increases greatly.

본 논문에서는 IoT/WSN을 랜덤 기하 그래프를 이용하여 모델링하고 WSN에서 발생되는 데이터를 효율적으로 저장하기 위해 사용되는 지역 부호의 성능을 고찰하였다.. 노드 수가 n=100, 200인 무선 센서 네트워크를 랜덤 기하 그래프로 모델링하여 분산화된 저장 코드의 복호 성능을 시뮬레이션을 통해 분석하였다. 네트워크의 총 노드 수가 n=100일 때와 200일 때 복호율 ${\eta}$에 따른 복호 성공률은 노드 수 n보다는 소스 노드 수 k값에 따라 좌우됨을 알 수 있었다. 특히 n 값에 관계없이 $${\eta}{\leq_-}2.0$$일 때 복호 성공 확률은 70%를 상회함을 알 수 있었다. 복호 율 ${\eta}$에 따른 복호 연산 량을 살펴본 바, BP 복호 방식의 복호 연산 량은 소스 노드 수 k 값이 증가함에 따라 기하급수적으로 증가함을 알 수 있었다. 이는 소스 노드의 수가 증가할수록 LT 부호의 길이가 길어지고 이에 따라 복호 연산량이 크게 증가하는데 원인이 있는 것으로 생각된다.

Keywords

References

  1. Dejan Vukobratovic, Cedomir Stefanovic, Vladimir Cmojevic, Francesco Romano Fantacci, "Rateless Packet Approach for Data Gathering in Wireless Sensor Networks," IEEE Journal on Selected Areas in Communications Volume: 28, Issue: 7, September 2010
  2. Hoyoung Cheong, "On-the-Fly Belief Propagation Decoding of Decentralized Luby Transform Codes for Distributed Storage in a Small-Scale Wireless Sensor Network,"Journal of KIIECT, Vol.9 No. 5, Dec. 2016, pp. 503-510.
  3. M. Penrose, Random Geometric Graphs, New York: Oxford University Press, 2003.
  4. Zhenning Kong, Salah A. Aly, Emina Soljanin, "Decentralized Coding Algorithms for Distributed Storage in Wireless Sensor Networks," IEEE Journal on Selected Areas in Communications, Volume: 28, Issue: 2, February 2010.
  5. A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, "Growth codes: Maximizing sensor network data persistence," in Proc. of ACM Sigcom' 06, Pisa, Italy, September, 2006.
  6. Samira Chouikhi, Ines El Korbia, Yacine Ghamri-Doudanec, Leila Azouz Saidane, "A Survey on Fault Tolerance in Small and Large Scale Wireless Sensor Networks," Computer Communications, Volume 69, 15 September 2015, pp. 22-37. https://doi.org/10.1016/j.comcom.2015.05.007
  7. C. Avin and G. Ercal, "On the cover time of random geometric graphs," in Proc. 32nd International Colloquium of Automata, Languages and Programming (ICALP'05), Lisboa, Portugal, pp. 677-689, July, 2005.
  8. M. Luby, "LT Codes," Proc. of the 43rd Annual IEEE Symp. on Foundations of Comp. Sc., pp 271-280, Vancouver, Canada, November 2002
  9. Valerio Bioglio, Marco Grangetto, Rossano Gaeta, Matteo Sereno, "On the fly Gaussian Elimination for LT Codes," IEEE Communications Letters, Volume: 13, Issue: 12, December 2009, pp 935-955. https://doi.org/10.1109/LCOMM.2009.12.091170
  10. Hoyoung Cheong,"An Improved Belief Propagation Decoding for LT Codes,"Journal of KIIECT, Vol.7 No. 4, Dec. 2014, pp. 223-228.
  11. Yoo, Jinho, Choi, Sung-Gi,"Energy Efficient Routing Protocol for Mobile Wireless Sensor Networks,"Journal of KIIECT, Vol.8 No. 5, Dec. 2015, pp. 405-411.