• Title/Summary/Keyword: Behaviour of tunnel

Search Result 200, Processing Time 0.024 seconds

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

The responses of battered pile to tunnelling at different depths relative to the pile length

  • Mukhtiar Ali Soomro;Naeem Mangi;Dildar Ali Mangnejo;Zongyu Zhang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.603-615
    • /
    • 2023
  • Population growth and urbanization prompted engineers to propose more sophisticated and efficient transportation methods, such as underground transit systems. However, due to limited urban space, it is necessary to construct these tunnels in close proximity to existing infrastructure like high-rise buildings and bridges. Battered piles have been widely used for their higher stiffness and bearing capacity compared to vertical piles, making them effective in resisting lateral loads from winds, soil pressures, and impacts. Considerable prior research has been concerned with understanding the vertical pile response to tunnel excavation. However, the three-dimensional effects of tunnelling on adjacent battered piled foundations are still not investigated. This study investigates the response of a single battered pile to tunnelling at three critical depths along the pile: near the pile shaft (S), next to the pile (T), and below the pile toe (B). An advanced hypoplastic model capable of capturing small strain stiffness is used to simulate clay behaviour. The computed results reveal that settlement and load transfer mechanisms along the battered pile, resulting from tunnelling, depend significantly on the tunnel's location relative the length of the pile. The largest settlement of the battered pile occurs in the case of T. Conversely, the greatest pile head deflection is caused by tunnelling near the pile shaft. The battered pile experiences "dragload" due to negative skin friction mobilization resulting from tunnel excavation in the case of S. The battered pile is susceptible to induced bending moments when tunnelling occurs near the pile shaft S whereas the magnitude of induced bending moment is minimal in the case of B.

A Study on the Behaviour of the Station Structure due to Adjacent Construction (근접시공에 따른 정거장구조물 거동특성에 관한 연구)

  • Chung, Jeeseung;Kim, Manhwa;Lee, Sungil;Kim, Hongjoo;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.55-64
    • /
    • 2016
  • Recently, it has been made many adjacent construction of inter-facility by the expansion of urban infrastructure facilities using the underground space. The complaints relating to the stability of the facility by adjacent construction is common. In this study, it was conducted for the subway line 5 Gimpo airport station structure in the upper Gimpo urban railway to determine the behavior characteristics of station structure according to adjacent construction. It was performed evaluation of the safety zone and excavation method for station structure. And after a review of damage evaluation, track irregularities and structural calculation by using a numerical analysis, stability of the station structure according to adjacent construction was evaluated to be secured. This study is expected to be used as basic data in advance if you need to review the effects of nearby structure according to adjacent construction.

A numerical study on squeezing of overstressed rock around deep tunnels (심부 터널 주변 과응력 암반의 압출 거동에 관한 수치해석적 연구)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.557-568
    • /
    • 2016
  • Squeezing is a phenomenon that may occur in deep tunneling and could bring about a large plastic deformation, tunnel closure and collapse of tunnel supports. Therefore, quantitative estimations of deformation and stress from squeezing and its possibility are necessary for establishment of a rational tunneling method. This study carried out three dimensional numerical analyses using a strain softening model in order to simulate the behaviour of squeezing and to estimate deformation and yield area around tunnels quantitatively. Numerical analyses were performed for 42 cases of various stress and strength conditions. As a result, the maximum tangential stress and strength of rock mass ratio could estimate plastic deformation and yield depth around tunnels and equations of relations between them were proposed.

Clogging Phenomenon and Drainage Capacity of Tunnel Filters (터널필터재의 폐색현상과 배수성능 평가)

  • 이인모;유승헌;박광준;이석원;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.3-18
    • /
    • 1999
  • The geotextile filter, which is installed between the ground and the lining and used as a tunnel drainage system, should have sufficient groundwater drainage capacity so that water pressure does not act on the lining. The clogging may have a serious effect on the long term behaviour of geotextile filters. Two typical weathered residual soils in Korea, Shinnae-dong soil and Poi-dong soil, were chosen to investigate the in-plane flow characteristics of the soils with varying degree of compressive stresses applied on the geotextiles and with various conditions of hydraulic gradient. The Shinnae-dong soil is a relatively coarse material classified as'SW-SM'; on the other hand, the Poi-dong soil is much finer and is classified as'SC'. Based on the comparison of the $O_{95}$ of geotextile to the $D_{15}$ of residual soils, existing clogging criteria were reviewed, and a tentative clogging criterion for the in-plane flow of the residual soil through filters was proposed. The Shinnae-dong soil showed noticeable clogging phenomenon, while the clogging of the Poi-dong soil was not so serious. The Poi-dong soil seemed to be hindered in particle transport by its cohesiveness.

  • PDF

Analysis of Seismic Behaviour of Cut and Cover Tunnel according to backfill materials (뒤채움재 특성별 개착식 터널의 동적 거동 특성 연구)

  • Kim, Nag-Young;Lee, Seung-Ho;Lee, Yong-Jun;Kim, Jung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.177-186
    • /
    • 2005
  • World widely, the occurrences of earthquakes have been increased recently including to nations which earthquake often happen to like Japan. Taking into account that the earthquake acceleration at design was 0.154 g at the contigency level earthuake (CLE) with its geological condition, it resulted that this method must be the most efficient condition against the earthquake vibration to two lane cut-and cover tunnel. The correlations between the result of the shaking table test and its numerical analysis showed that the test data of the bending stress due to the earthquake vibration have been underestimated about 5 percents in case of the cut slope 1 : 0.6 and about 10 percent in case of the cut slope 1 : 1.2. However, on average, the results showed a similar tendency that the higher the height of the backfill of the EPS block was, the less the bending stress was.

  • PDF

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.

A study on the mechanism of stress corrosion cracking of stainless steel (스테인레스 강판의 응력부식균열 전파기구에 관한 연구)

  • 임우조;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.153-158
    • /
    • 1985
  • The dependence of the corrosion potential on the stress corrosion cracking of 304 austenitic stainless steel was inspected by using the specimen of constant displacement type under the environment of 42% $MgCl_2$ boiled solution. The relationship of the corrosion potential to the intermittent propagation behaviour in stress corrosion cracking was cleared. As the results, a possible model of stress corrosion cracking of 304 austenitic stainless steel in $MgCl_2$ boiled solution was presented on the basis of the Film Rupture Model. This model is specified by the following process. Rupturing of passive film at notch tip .rarw. Dissolution of metal ion and formation of tunnel .rarw. Initiation of microcrack .rarw. Propagation of main crack .rarw. Recreation of passive film at new crack surface.

  • PDF

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.