• Title/Summary/Keyword: Behaviour Analysis

Search Result 1,872, Processing Time 0.024 seconds

Experimental study of the torsion of reinforced concrete members

  • Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.713-737
    • /
    • 2006
  • This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.

The elastic and plastic behaviour of the micro-FE models for vertebral trabecular bones (척추 해면골에 대한 미세 유한요소모델의 탄성 및 소성특성에 관한 연구)

  • 우대곤;김한성;원예연;백명현;탁계래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1320-1323
    • /
    • 2003
  • In this study, the micro-FE analyses were carried out for the plastic behaviour of vertebral trabecular bones. Many researchers have investigated the elastic behaviour of trabecular bones by using the micro-finite element models based on the micro-CT images. However, there was no micro-FE model to account for the plastic behaviour of trabecular bones. Ulrich et at. reported that best results at coarser model were obtained when using 'compensated hexahedron models' with the same relative density. This study indicates that, for the elastic and plastic analysis, 'the compensated hexahedron FE model' is likely to be limited to about 63$\mu\textrm{m}$ image resolution in the vertebra trabecular bones.

  • PDF

A Study on the Snap-through Behaviour According to the Initial Deflection Shape of Plate Members (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • 고재용;이계희;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.348-356
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the steel structure and marine structure so that it is wide. Especially, the post-buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct post-buckling behaviour accurately at the stability of the ship structure or marine structure. In this study, examined closely about conduct and snap-through behaviour after initial buckling of thin plate structure which apply compressive load according to various kinds initial deflection shape under all edges simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M in used ANSYS program and complicated nonlinear behaviour to analyze such as secondary buckling with snap-through behaviour. Nonlinear buckling control is applied between newton-raphson method and arc-length method in this study

  • PDF

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

On the intra-granular behaviour of a cocktail of inert gases in oxide nuclear fuel: Methodological recommendation for accelerated experimental investigation

  • Romano, M.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1929-1934
    • /
    • 2022
  • Besides recent progresses in the physics-based modelling of fission gas and helium behaviour, the scarcity of experimental data concerning their combined behaviour (i.e., cocktail) hinders further model developments. For this reason, in this work, we propose a modelling methodology aimed at providing recommendations for accelerated experimental investigations. By exploring a wide range of annealing temperatures and cocktail compositions with a physics-based modelling approach we identify the most interesting conditions to be targeted by future experiments. To corroborate the recommendations arising from the proposed methodology, we include a sensitivity analysis quantifying the impact of the model parameters on fission gas and helium release, in conditions representative of high and low burnup.

A Review of Simulation for Human Escape on Shipboard (인적요소를 고려한 선상 탈출 시뮬레이션 기술)

  • 김홍태;이동곤;박진형
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.135-140
    • /
    • 2001
  • In the last years there have been some severe accidents with passenger vessels. So, International Maritime Organization(IMO) has recognized that computer stimulation of the evacuation may be required for passenger vessels. Human elements is a key issues of escape analysis on shipboard. There are technical requirements to simulate of escape analysis for human elements. Technical requirements include model of ship structure, evacuation algorithm, human behaviour analysis and influence of ship listing/motion. This paper provides the key issues and technologies of simulation for human escape on shipboard.

  • PDF

A Study on the Analysis of Steel Bracing Behaviour Subjected to Cyclic Loads (반복하중을 받는 강재 브레이싱의 거동에 관한 해석적 연구)

  • 구민세;김병석;김일곤
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.69-75
    • /
    • 1989
  • The primary purpose of using bracings is to improve the lateral rigidity of main structural system, i.e., columns and beams, by reinforciing them with much smaller members. In conventional design methods brackings are considered as tension-only members, since difficulties arise in the analysis when the P-.DELTA. effects and post-buckling behaviour of the bracing members are taken into account. This is particulary true fox X-bracings. Recently, however, both analytical and experimental studies have been conducted to investigate the more precise and real behaviour of bracing members, especially for the nonlinear and plastic behaviour under cyclic loads. In this study, an analytical model is proposed to investigate the nonlinear behavior of steel bracing members subjected to cyclic loads. Results of the analysis were compared with previous experimental results, and good agreements were obtained between these results.

  • PDF

Understanding Driver Compliance Behaviour at Signalised Intersection for Developing Conceptual Model of Driving Simulation

  • Aznoora Osman;Nadia Abdul Wahab;Haryati Ahmad Fauzi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.142-150
    • /
    • 2024
  • A conceptual model represents an understanding of a system that is going to be developed, which in this research, a driving simulation software to study driver behavior at signalised intersections. Therefore, video observation was conducted to study driver compliance behaviour within the dilemma zone at signalised intersection, with regards to driver's distance from the stop line during yellow light interval. The video was analysed using Thematic Analysis and the data extracted from it was analysed using Chi-Square Independent Test. The Thematic Analysis revealed two major themes which were traffic situation and driver compliance behaviour. Traffic situation is defined as traffic surrounding the driver, such as no car in front and behind, car in front, and car behind. Meanwhile, the Chi-Square Test result indicates that within the dilemma zone, there was a significant relationship between driver compliance behaviour and driver's distance from the stop line during yellow light interval. The closer the drivers were to the stop line, the more likely they were going to comply. In contrast, drivers showed higher non-compliant behavior when further away from stop line. This finding could help in the development of conceptual model of driving simulation with purpose in studying driver behavior.

Nonlinear Analysis of Concrete Structure at Extremely Low Temperature (극저온 물성을 고러한 콘크리트 구조물의 비선형 해석)

  • 곽효경;송종영;이병국;이광모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.174-181
    • /
    • 2000
  • A brief review of previous studies on the behaviour of concrete at extremely low temperature is presented in this paper. In addition, to describe temperature dependent behaviour of concrete, simple piecewise linear stress-strain relation is introduced. The proposed curve shows good agreement with experimental stress-strain curves at various temperature conditions. Moreover, numerical analyses for two PC beams are conducted to verify the influence of extremely low temperature to the structural behaviour.

  • PDF