Acknowledgement
This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project) and from the Euratom research and training programme 2014-2018 through the INSPYRE Project under grant agreement No 754329.
References
- A.T. Motta, D.R. Olander, Light Water Reactor Materials, first ed., vol. I, Fundamentals, American Nuclear Society Scientific Publications, 2017.
- Hj. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242, https://doi.org/10.1080/00337578008207118.
- J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
- P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412, https://doi.org/10.1016/j.jnucmat.2018.12.037.
- P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politec. Di Milano, Italy, 2011.
- G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002.
- L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
- D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330, https://doi.org/10.1016/j.jnucmat.2018.02.024.
- J. Rest, A. Zawadski, FASTGRASS : A Mechanistic Model for the Prediction of Xe, I, Cs, Te, Ba, and Sr Release from Nuclear Fuel under Normal and SevereAccident Conditions, n.d.
- M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.
- L. Noirot, MARGARET: a comprehensive code for the description of fission gas behavior, Nucl. Eng. Des. 241 (2011) 2099-2118, https://doi.org/10.1016/j.nucengdes.2011.03.044.
- G. Jomard, C. Struzik, A. Boulore, P. Mailhe, V. Auret, R. Largenton, CARACAS : an industrial model for the description of fission gas behavior in LWR-UO2 fuel, in: World React. Fuel Perform. Meet., Sendai, Japan, 2014, pp. 14-17.
- I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, M. Groos, Thermal treatment of uranium oxide irradiated in pressurized water reactor: swelling and release of fission gases, J. Nucl. Mater. 255 (1998) 85-91, https://doi.org/10.1016/S0022-3115(98)00039-7.
- R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.
- S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6-83 GWd/t, J. Nucl. Mater. 206 (1993) 22-34. https://doi.org/10.1016/0022-3115(93)90229-R
- E. Maugeri, T. Wiss, J.P. Hiernaut, K. Desai, C. Thiriet, V.V. Rondinella, J.Y. Colle, R.J.M. Konings, Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2009) 461-466, https://doi.org/10.1016/j.jnucmat.2008.12.033.
- Z. Talip, T. Wiss, E.A. Maugeri, J.Y. Colle, P.E. Raison, E. Gilabert, M. Ernstberger, D. Staicu, R.J.M. Konings, Helium behaviour in stoichiometric and hyperstoichiometric UO2, J. Eur. Ceram. Soc. 34 (2014) 1265-1277, https://doi.org/10.1016/j.jeurceramsoc.2013.11.032.
- Z. Talip, T. Wiss, V. Di Marcello, A. Janssen, J.Y. Colle, P. Van Uffelen, P. Raison, R.J.M. Konings, Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (2014) 117-127, https://doi.org/10.1016/j.jnucmat.2013.10.066.
- G. Martin, P. Garcia, C. Sabathier, G. Carlot, T. Sauvage, P. Desgardin, C. Raepsaet, H. Khodja, Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2133-2137, https://doi.org/10.1016/j.nimb.2010.02.064.
- J.-P. Hiernaut, T. Wiss, J.-Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324, https://doi.org/10.1016/J.JNUCMAT.2008.03.006.
- J.P. Hiernaut, T. Wiss, V.V. Rondinella, J.Y. Colle, A. Sasahara, T. Sonoda, R.J.M. Konings, Specific low temperature release of 131Xe from irradiated MOX fuel, J. Nucl. Mater. 392 (2009) 434-438, https://doi.org/10.1016/j.jnucmat.2009.04.002.
- D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
- D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
- D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code, Online Repos. (n.d.), https://gitlab.com/poliminrg/sciantix. (Accessed 4 October 2019).
- D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (2006) 94-109, https://doi.org/10.1016/j.jnucmat.2006.03.010.
- P. Sung, Equilibrium Solubility and Diffusivity of Helium in Single-Crystal Uranium Dioxide, PhD Thesis, Univ, Washingt., 1967.
- L. Cognini, D. Pizzocri, T. Barani, P. Van Uffelen, A. Schubert, T. Wiss, L. Luzzi, Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244, https://doi.org/10.1016/j.nucengdes.2018.09.024.
- H. Liu, Carnahan-Starling type equations of state for stable hard disk and hard sphere fluids, Mol. Phys. 119 (2021), https://doi.org/10.1080/00268976.2021.1905897.
- L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molucelar dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
- T. Kogai, Modelling of fission gas release and gaseous swelling of light water reactor fuels, J. Nucl. Mater. 244 (1997) 131-140, https://doi.org/10.1016/S0022-3115(96)00731-3.
- L. Luzzi, L. Cognini, D. Pizzocri, T. Barani, G. Pastore, A. Schubert, T. Wiss, P. Van Uffelen, Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018) 265-271, https://doi.org/10.1016/j.nucengdes.2018.01.044.
- J. Turnbull, R. White, C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: Proc. A Tech. Comm. Meet. Organ. by Int. at, . Energy Agency Held Preston, 1989, pp. 18-22. Sept. 1988.
- G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408, https://doi.org/10.1016/j.jnucmat.2014.09.077.
- F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (1958) 335-351. https://doi.org/10.1016/0022-3697(58)90053-2