DOI QR코드

DOI QR Code

On the intra-granular behaviour of a cocktail of inert gases in oxide nuclear fuel: Methodological recommendation for accelerated experimental investigation

  • Romano, M. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2021.08.04
  • Accepted : 2021.11.21
  • Published : 2022.05.25

Abstract

Besides recent progresses in the physics-based modelling of fission gas and helium behaviour, the scarcity of experimental data concerning their combined behaviour (i.e., cocktail) hinders further model developments. For this reason, in this work, we propose a modelling methodology aimed at providing recommendations for accelerated experimental investigations. By exploring a wide range of annealing temperatures and cocktail compositions with a physics-based modelling approach we identify the most interesting conditions to be targeted by future experiments. To corroborate the recommendations arising from the proposed methodology, we include a sensitivity analysis quantifying the impact of the model parameters on fission gas and helium release, in conditions representative of high and low burnup.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project) and from the Euratom research and training programme 2014-2018 through the INSPYRE Project under grant agreement No 754329.

References

  1. A.T. Motta, D.R. Olander, Light Water Reactor Materials, first ed., vol. I, Fundamentals, American Nuclear Society Scientific Publications, 2017.
  2. Hj. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242, https://doi.org/10.1080/00337578008207118.
  3. J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
  4. P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412, https://doi.org/10.1016/j.jnucmat.2018.12.037.
  5. P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politec. Di Milano, Italy, 2011.
  6. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002.
  7. L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
  8. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330, https://doi.org/10.1016/j.jnucmat.2018.02.024.
  9. J. Rest, A. Zawadski, FASTGRASS : A Mechanistic Model for the Prediction of Xe, I, Cs, Te, Ba, and Sr Release from Nuclear Fuel under Normal and SevereAccident Conditions, n.d.
  10. M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.
  11. L. Noirot, MARGARET: a comprehensive code for the description of fission gas behavior, Nucl. Eng. Des. 241 (2011) 2099-2118, https://doi.org/10.1016/j.nucengdes.2011.03.044.
  12. G. Jomard, C. Struzik, A. Boulore, P. Mailhe, V. Auret, R. Largenton, CARACAS : an industrial model for the description of fission gas behavior in LWR-UO2 fuel, in: World React. Fuel Perform. Meet., Sendai, Japan, 2014, pp. 14-17.
  13. I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, M. Groos, Thermal treatment of uranium oxide irradiated in pressurized water reactor: swelling and release of fission gases, J. Nucl. Mater. 255 (1998) 85-91, https://doi.org/10.1016/S0022-3115(98)00039-7.
  14. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.
  15. S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6-83 GWd/t, J. Nucl. Mater. 206 (1993) 22-34. https://doi.org/10.1016/0022-3115(93)90229-R
  16. E. Maugeri, T. Wiss, J.P. Hiernaut, K. Desai, C. Thiriet, V.V. Rondinella, J.Y. Colle, R.J.M. Konings, Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2009) 461-466, https://doi.org/10.1016/j.jnucmat.2008.12.033.
  17. Z. Talip, T. Wiss, E.A. Maugeri, J.Y. Colle, P.E. Raison, E. Gilabert, M. Ernstberger, D. Staicu, R.J.M. Konings, Helium behaviour in stoichiometric and hyperstoichiometric UO2, J. Eur. Ceram. Soc. 34 (2014) 1265-1277, https://doi.org/10.1016/j.jeurceramsoc.2013.11.032.
  18. Z. Talip, T. Wiss, V. Di Marcello, A. Janssen, J.Y. Colle, P. Van Uffelen, P. Raison, R.J.M. Konings, Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (2014) 117-127, https://doi.org/10.1016/j.jnucmat.2013.10.066.
  19. G. Martin, P. Garcia, C. Sabathier, G. Carlot, T. Sauvage, P. Desgardin, C. Raepsaet, H. Khodja, Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2133-2137, https://doi.org/10.1016/j.nimb.2010.02.064.
  20. J.-P. Hiernaut, T. Wiss, J.-Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324, https://doi.org/10.1016/J.JNUCMAT.2008.03.006.
  21. J.P. Hiernaut, T. Wiss, V.V. Rondinella, J.Y. Colle, A. Sasahara, T. Sonoda, R.J.M. Konings, Specific low temperature release of 131Xe from irradiated MOX fuel, J. Nucl. Mater. 392 (2009) 434-438, https://doi.org/10.1016/j.jnucmat.2009.04.002.
  22. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
  23. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
  24. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code, Online Repos. (n.d.), https://gitlab.com/poliminrg/sciantix. (Accessed 4 October 2019).
  25. D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (2006) 94-109, https://doi.org/10.1016/j.jnucmat.2006.03.010.
  26. P. Sung, Equilibrium Solubility and Diffusivity of Helium in Single-Crystal Uranium Dioxide, PhD Thesis, Univ, Washingt., 1967.
  27. L. Cognini, D. Pizzocri, T. Barani, P. Van Uffelen, A. Schubert, T. Wiss, L. Luzzi, Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244, https://doi.org/10.1016/j.nucengdes.2018.09.024.
  28. H. Liu, Carnahan-Starling type equations of state for stable hard disk and hard sphere fluids, Mol. Phys. 119 (2021), https://doi.org/10.1080/00268976.2021.1905897.
  29. L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molucelar dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
  30. T. Kogai, Modelling of fission gas release and gaseous swelling of light water reactor fuels, J. Nucl. Mater. 244 (1997) 131-140, https://doi.org/10.1016/S0022-3115(96)00731-3.
  31. L. Luzzi, L. Cognini, D. Pizzocri, T. Barani, G. Pastore, A. Schubert, T. Wiss, P. Van Uffelen, Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018) 265-271, https://doi.org/10.1016/j.nucengdes.2018.01.044.
  32. J. Turnbull, R. White, C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: Proc. A Tech. Comm. Meet. Organ. by Int. at, . Energy Agency Held Preston, 1989, pp. 18-22. Sept. 1988.
  33. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408, https://doi.org/10.1016/j.jnucmat.2014.09.077.
  34. F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (1958) 335-351. https://doi.org/10.1016/0022-3697(58)90053-2