• Title/Summary/Keyword: Bed load

Search Result 268, Processing Time 0.029 seconds

A Cooperative Security Gateway cooperating with 5G+ network for next generation mBcN (차세대 mBcN을 위한 5G+ 연동보안게이트웨이)

  • Nam, Gu-Min;Kim, Hyoungshick;Lee, Hyun-Jin;Cho, Hark-Su
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.129-140
    • /
    • 2021
  • The next generation mBcN should be built to cooperate with the wireless network to support hyper-speed and hyper-connectivity. In this paper, we propose a network architecture for the cooperation mBcN and 5G commercial network and architecture of the cooperative security gateway required for the cooperation. The proposed cooperative security gateway is between gNB and UPF to support LBO, SFC, and security. Our analysis shows that the proposed architecture has several advantages. First of all, user equipment connected with the mBcN can be easily connected through the 5G commercial radio network to the mBcN. Second, the military application traffic can be transmitted to mBcN without going through the 5G core network, reducing the end-to-end transmission delay without causing the traffic load on the 5G core network. In addition, the security level of the military application can effectively be maintained because the user equipment can be connected to the cooperative security gateway, and the traffic generated by the user equipment is transmitted to the mBcN without going through the 5G core network. Finally, we demonstrate that LBO, SFC, and security modules are essential functions of the proposed gateway in the 5G test-bed environment.

Experimental study for the development of using hydrophone bedload discharge estimation equation (하이드로폰을 이용한 소류사량 추정 관계식 개발을 위한 실험적 연구)

  • Kim, Hyeongyu;Choi, Jongho;Jun, Kyewon;Kim, Sunguk;Lee, Donghyeok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.146-146
    • /
    • 2020
  • 최근 하천의 유사 중 소류사량을 계측하기 위해 사용된 기존의 물리적 소류사 샘플러를 이용한 직접계측방법은 홍수 시에 깊은 수위와 빠른 유속, 계측 절차상의 위험성 때문에 현장관측이 매우 어려운 한계를 극복하기 위해 현업에서는 소류사량을 간접적으로 추정하는 이론식에 의한 방법이 광범위하게 활용되고 있으나 이 방법 또한 추정이론식의 적용지역, 적용방법에 따라 결과가 수십배 이상 큰 차이를 나타나 실제 활용성에 대한 문제점이 있다. 이러한 기존의 소류사량 측정 방법의 문제점을 보완하기 위해 소류사량을 간접계측하는 방법이 활발히 제안되고 있다. 대표적인 방법으로 하상 이동 시 소류사의 충돌음을 음향센서로 계측하여 신호처리를 통해 소류사량을 추정하는 계측기기인 하이드로폰이 있다. 그러나 국외의 소류사량 간접계측 장치는 소류사량의 운송량이 많을 경우 음향신호 중접으로 인해 펄스 수의 감소, 감지 가능한 입경크기의 제한 등의 문제가 있다. 또한 국내의 백무평(2018)이 제안한 소류사 분석 방법인 대역통과방법(B-P Method)는 소류사량 추정에 있어서 기존의 방법과는 달리 주파수 특성을 반영하여 이전 연구들에 비하여 펄스 검출률을 향상시겼지만 이 방법은 극히 낮은 저유속과 작은 입경이라는 실험조건에서 이루어졌다는 제한사항이 있다. 따라서 본 연구는 다양한 입경과 고유속에 대하여 소류사량을 정량화할 수 있는 방법을 제시하기 위해 소류사 입경이 하이드로폰에 충돌할 때 발생하는 단독입자의 충돌음을 계측하기 위한 실외 수로실험장치를 구축하여 계측을 수행하였다. 실험은 현장에서 대표 시료로 분류된 몇 가지 입경에 대해서 유량 변화에 따른 충돌음향과 소류사량 그리고 소류사 입경크기에 따른 하이드로폰에서 인지되는 음향 특성을 계측 및 분석하였다. 연구결과 입경 크기 및 수리조건 변화에 따른 하이드로폰의 충돌음향 특성을 파악하여 단일 입경별 소류사량 추정관계식을 산출하였다. 또한 산출된 추정 관계식의 특성치와 공급 소류사량 간의 관계를 유도해 보았다. 향후 혼합입경에 대한 실험과 추정 관계식 신뢰성 검토 후 추가적으로 다양한 실험조건을 고려하여 실제 하천에 운송되는 소류사량과의 교정관계 확립을 진행한다면 국내 소류사량 데이터 수집을 위한 현장 설치까지 가능할 것으로 사료된다.

  • PDF

Seismic Performance Evaluation of Unreinforced and ECC-jacketed Masonry Fences using Shaking Table Test (진동대실험을 사용한 비보강 및 ECC 자켓 보강 조적담장의 내진성능평가)

  • Yonghun Lee;Jinwoo Kim;Jae-Hwan Kim;Tae-Sung Eom;Sang-Hyun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.182-192
    • /
    • 2023
  • In this study, the efficacy of Engineered Cementitious Composite(ECC) jacket for masonry fences subjected to lateral dynamic load was experimentally verified through a shaking table test, comparing it with the performance of an unreinforced masonry(URM) fence. Firstly, dominant frequencies, modal damping ratios and deformed shapes were identified through an impact hammer test. URM and ECC-strengthened fences with heights of 940mm and 970mm had natural frequencies of 6.4 and 35.3Hz, and first modal damping ratios of 7.0 and 5.3%, respectively. Secondly, a shaking table test was conducted in the out-of-plane direction, applying a historical earthquake, El Centro(1940) scaled from 25 to 300%. For the URM fence, flexural cracking occurred at the interface of brick and mortar joint(i.e., bed joint) at the ground motion scaled to 50%, and out-of-plane overturning failure followed during the subsequent test conducted at the ground motion scaled to 30%. On the other hand, the ECC-jacketed fence showed a robust performance without any crack or damage until the ground motion scaled to 300%. Finally, the base shear forces exerted upon the URM and ECC-jacketed fences by the ground motions scaled to 25~300% were evaluated and compared with the ones calculated according to the design code. In contrast to the collapse risk of the URM fence at the ground motion of 1,000-year return period, the ECC-jacketed fence was estimated to remain safe up to the 4,800-year return period ground motion.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.