• Title/Summary/Keyword: Bed Temperature

Search Result 1,039, Processing Time 0.026 seconds

A Study on the Reclamation of the Furan Sand by the Fluidized Bed (유동층을 이용한 주물사의 재생에 관한 연구)

  • Baek, Ko-Kil;Choi, Yang-Jin
    • Journal of Korea Foundry Society
    • /
    • v.12 no.6
    • /
    • pp.471-479
    • /
    • 1992
  • For the last 2 decades, the bonding materials for the foundry sand and the foundry equipments with high performance have been developed and employed in the foundry shops. In those periods, the furan resins hardened in higher temperature have been replaced with the self-hardened ones in the room temperature. Simultaneously the various reclamation methods of the self-hardened furan resin sand have been developed in order to get the clean working environments, the reduction of solid wastes and the lower of production cost in the foundry. In this experimental study, the combustion reclamation method using the fluidized bed among the various methods was studied in order to reduce the L.O.I. and /or $N_2$ gas due to the deposition of the furan resins and the hardeners. Comparing the results of this experimental combustion reclamation method with those of the employed pneumatic method, the Surface Stability Index of the specimen made by combustion method is 30% higher than that of the latter one and L.O.I. decreases about 30%. The reclamation temperature of 650$^{\circ}C$ in this experimental fluidized bed would be recommended in the viewpoints of the reclamation period, the fuel consumption and the residual quantity of the furan resin. The formula determining the minimum fluidizing velocities according to the temperatures in the fluidized bed has been obtained.

  • PDF

Analysis of Combustion Characteristics of Bituminous and Anthracite Coal in a Fluidized Bed Combustor (유동층연소로에서 유연탄과 무연탄의 연소특성 해석)

  • Jang, Hyun Tae;Park, Tae Sung;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.586-591
    • /
    • 1999
  • Mixed-firing of a bituminous and an anthracite coal carried out in a batch fluidized bed combustor(0.109 m-I.D., 0.9 m-height). Effect of particle size an mixing fraction of anthracite and bituminous coal combustion characteristics were studied. The temperature profiles and pressure fluctuation properties were measured to interpret the combustion characteristics in a batch fluidized bed combustor. The used domestic anthracite coal has heating value of 2010 kcal/kg and the imported high-calorific bituminous coal has heating value of 6520 kcal/kg. The combustion characteristics in a batch fluidized bed combustor could be interpreted by using pressure fluctuation properties and temperature increasing rates. It was found that the optimum anthracite mixing percentage could be predicted analyzing the combustion rate and fluidization characteristics, The optimum mixing fraction was about 30 %. The different burning region of fluidized bed combustor was measured by temperature increasing rates.

  • PDF

Effect of Operation Conditions on Pyrolysis of Larch Sawdust in a Bubbling Fluidized Bed (기포유동층 반응기를 이용한 낙엽송 톱밥의 열분해 특성)

  • Yoo, Kyung-Seun;Eom, Min-Seop;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.478-482
    • /
    • 2016
  • In this study, a bubbling fluidized bed pyrolyzer (0.076 m I.D. and 0.8 m high) was employed to investigate the fast pyrolysis characteristics of larch sawdust which is abundant in Korea. The effects of operation conditions, such as bed temperature ($350-550^{\circ}C$), fluidization velocity ratio ($U_o/U_{mf} $: 2.0-6.0) and feeding rate (2.2-7.0 g/min) on product yields and their chemical components were studied. The number of chemical compounds in the bio-oil decreased with the increasing bed temperature because of secondary pyrolysis. The effects of the Uo/Umf ratio and feeding rate on bio-oil compositions were relatively lower than those of the bed temperature.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Adsorption Characteristics of Water Vapor on Zeolite (Zeolite의 수증기 흡착특성)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.667-672
    • /
    • 2011
  • The purpose of this work is to present the experiment results by a dynamic adsorption of water vapor on pelletized zeolites (ADZ300, ADZ400, and ADZ500) in fixed bed. The breakthrough curves of water vapor with several different concentrations and temperature in the range of 25~45 $^{\circ}C$ on zeolite bed were investigated. In the same conditions, the breakthrough time on ADZ400 and ADZ500 were little longer than ADZ300, and the equilibrium adsorption capacity on ADZ500 was highest. The higher the concentration of water vapor was, the faster the breakthrough time was, and the slope of breakthrough curves showed a tendency to increase. The faster the flow rate of water vapor was, the faster the breakthrough time was relatively, but variations between flow rate and breakthrough time did not have a proportional relationship. The breakthrough curve maintained constant gradient in spite of variation of flow rate in the same concentration. The temperature rise in zeolite bed by adsorption heat was occurred in the early stage of adsorption. After water molecule layers were formed on the surface of zeolite, the temperature was slowly cooled by water vapors continuously flowed in as constant temperature. The greater the concentration of water vapor and adsorption temperature were, the temperature difference in zeolite bed was increased.

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

Effects of Production of Ever-bearing Strawberries Using Cool Air from Mushroom Cultivation House (버섯재배시설의 냉공기 이용이 사계성딸기 생산성에 미치는 영향)

  • Jeoung, Yun-Kyeoung;Park, Ju-Hyen;Ha, Tae Moon;Lee, Young-Suk;Seo, Myeong-Hoon;Kim, In-Chul
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • We designed a system that can automatically collect, convey, and control cool air of $15^{\circ}C-20^{\circ}C$ containing carbon dioxide from a mushroom cultivation house to a strawberry plastic house. We recorded the temperature at various positions from July to August 2017. The average temperature of the green house during day and at night was maintained at $33^{\circ}C$ and $26^{\circ}C$, respectively. In the moveable three-tier cylindrical bed, the average temperature around root was maintained at $26^{\circ}C$ and $21^{\circ}C$ during day and at night, respectively. On the high-bench in the green house, the temperature was maintained at $32^{\circ}C$ and $30^{\circ}C$ during day and at night, respectively. The carbon dioxide concentration was maintained around 800-1,600 ppm in the mushroom cultivation system and 400-800 ppm in the strawberry plastic house. The growth characteristics of the strawberry treated with moveable three-tier cylindrical bed were significantly different from those of the untreated high-bench bed. In addition, during the summer season, moveable three-tier cylindrical bed showed more tendency to increase in normal fruit number (NFN) and to decrease in defective fruit number (DFN) compare to the high-bench bed. Therefore, the moveable three-tier cylindrical bed showed a tendency to be more than 2 times higher yields than that of the high-bench bed. It was confirmed that ever-bearing strawberry cultivars could be cultivated in green house due to the cool air supply from the mushroom cultivation system in the summer season.

Effect of the Cultivation Technology on the Yield of Paddy Straw Mushroom (Volvariella volvacea)

  • Thi-Thuy-Hai Luu;Dang-Khoa Bui;Nga Huynh;Truc-Linh Le;Iain David Green
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.161-171
    • /
    • 2022
  • The edible paddy straw mushroom Volvariella volvacea (Bull. ex F.) Singer has high nutritional and medicinal values. They are grown on a wide variety of agricultural by-products using different several methods. The result of this present study showed that type of bed and cultivation condition (outdoor/indoor) had effects on the yield of paddy straw mushrooms grown on the spent oyster mushroom sawdust. The treatment of circular compact bed under indoor cultivation condition (CYIC) had the best yield and biological efficiency (B.E.) with 2,119.2 g/bed and 14.5%, respectively, followed by the treatment of conventional bed under outdoor cultivation condition (COOC) with the yield and B.E. of 1,935.5 g/bed and 13.2%, respectively, but the lowest yield and B.E. were observed in the treatment of conventional bed under indoor cultivation condition (COIC) with 1,226.1 g/bed and 8.4%, respectively. Paddy straw mushrooms cultivated on spent oyster mushroom sawdust should be proper in both outdoor and indoor conditions by conventional and circular compact methods as well. However, in indoor conditions, paddy straw mushrooms should be grown in a circular compact bed to ensure the temperature of the bed is suitable for the mushroom growth.

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.81-85
    • /
    • 2007
  • A fluidized bed reactor is made with quartz. The size of FBR is 0.055 m I.D. and 1.0 m in height. The FBR was employed for the thermocatalytic decomposition of propane to produce hydrogen without $CO_{2}$. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. Carbon black DCC-N330 is used to decompose the propane gas. The propane decomposition reaction over carbon black catalyst in a fluidized bed reactor was carried out the temperature range of 600 ${\sim}$ 800 $^{\circ}C$, propane gas velocity of 1.0 ${\sim}$ 4.0$U_{mf}$($1U_{mf}$ = 0.61cm/s) and the catalyst loading of 100 ${\sim}$ 200g. Production of $H_{2}$ such as other reaction temperature, gas velocity, catalytic loading on the reaction rates was investigated. The carbon depositied on the catalyst surface was observed by FE-SEM. The particle size of the carbon black was observed by Particle size analyzer. Resulting production in the experiment was not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene.

  • PDF

A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.