• 제목/요약/키워드: Bearing plate

검색결과 438건 처리시간 0.026초

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.

현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구 (Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests)

  • 최용규;김명학
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.107-119
    • /
    • 2018
  • PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝을 현장 시험 부지에서 시험시공하였다. 이들 선단변형 PHC말뚝들에 대하여 하중전이측정이 수반된 연직압축정재하시험을 실시하였으며 시공직후 항타후 동재하시험을 수행하였다. 또한 선단부만 그라우팅한 선단변형PHC말뚝에 대한 연직압축정재하시험도 실시하였다. 3가지 다양한 선단말뚝들 즉, PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 하중-침하량 거동은 거의 동일한 양상을 나타내었다. 따라서 말뚝이 선단지지층에 근입된 길이가 동일하고 말뚝 본체의 직경이 동일할 경우 확장판 선단부착 PHC말뚝 및 강관 선단부착 PHC말뚝의 지지력 증대 효과는 거의 없는 것으로 나타났다. 최종재하하중단계에서 PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 주면마찰력은 각각 전체 재하하중의 95.8%, 95.6%, 97.8%를 분담하였으며, 선단지지력은 전체 재하하중의 4.2%, 4.4%, 2.2%를 분담하였다.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성 (Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test)

  • 신은철;김두환;이상조;이규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF

볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도 (Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut)

  • 박용명;이건준;김동현;주호중
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.617-626
    • /
    • 2014
  • 본 연구에서는 드릴천공 대비 산소토치로 볼트홀을 천공한 강재의 인장강도 평가와 지압이음강도 평가를 위한 실험 연구를 수행하였다. 강재의 인장강도 평가를 위해 앵글과 H-형강으로부터 각각 두께 10mm와 20mm의 드릴 및 산소천공 시험편을 제작하였다. 지압이음강도의 평가를 위해서는 모재와 첨접판을 드릴천공한 강재와 산소천공한 강재를 조합하여 시험체들을 제작하고 볼트이음강도 평가 실험을 수행하였다. 한편, 산소천공 시 열영향으로 인한 볼트홀 주위의 강재 성질의 변화를 평가하기 위해 비커스 경도를 측정하고 그 결과를 제시하였다. 또한, 산소천공 시 볼트홀 주위의 경도 증가에 따른 볼트이음강도의 평가를 위해 수치해석을 수행하였다.

표층처리지반에서의 반복하중재하시험을 통한 지지력 분석 (Bearing Capacity Analysis on Cyclic Loading of Soft Ground by Surface Reinforcement)

  • 곽노경;박민철;이송
    • 한국지반환경공학회 논문집
    • /
    • 제13권6호
    • /
    • pp.5-17
    • /
    • 2012
  • 초연약 지반의 개량을 위한 중장비의 안전한 주행성 확보를 위해 제일 우선적으로 검토되어야 하는 표층처리공법에 대한 연구는 아직 미진하며 표층처리공법 설계 시 건설기계의 반복적인 주행으로 인한 소성침하를 고려하지 못하고 있다. 따라서 본 연구에서는 표층처리공법에서 가장 많이 사용하고 있는 보강재인 지오텍스타일, 인장강도가 200kN/m와 100kN/m인 지오그리드와 대나무망으로 보강한 후 1.0m의 모래로 복토한 지반에서 현장 평판재하시험과 반복 평판재하시험을 실시하여 각 보강재별 지지력과 거동양상을 비교 평가하고자 한다. 평판재하시험 결과 대나무망을 사용하였을 경우 다른 보강재를 사용하였을 때보다 BCR값이 최대 1.5배 증가하였다.

사출성형 섬유강화플라스틱 볼트 연결부의 강도 평가를 위한 실험적 연구 (An Experimental Study for the Strength Evaluation of Bolted Connection in Resin Transfer Molding Fiber Reinforced Polymeric Plastic)

  • 최진우;김선희
    • 도시과학
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • Resin Transfer Molding FRP (RTM FRP) is a fiber reinforced polymeric plastic which is manufactured by applying pressure to fibers, injecting resin into a mold, and then impregnating it. RTM FRP is a new construction material suitable for producing non-continuum structural elements such as sole plate because it has excellent strength and can produce many members in a short time. In this study, experiments were conducted to estimate the capacity of the bolted connection of RTM FRP. First, a tensile test was conducted to confirm the mechanical properties such as the tensile strength of the RTM FRP to be used for the bolted connection experiments. In addition, experiments were conducted on the bolted connection with the thickness of the RTM FRP and the edge distance of the bolt as variables. In the first experiment, F4.8 bolts were used, and shear failure of the bolt occurred before the RTM FRPs were failed. The F4.8 bolt is a general structural bolts used for the sole plate of a bridge bearing, and it was confirmed that the RTM FRP has a higher bold bearing strength than the shear strength of a F4.8 bolt. In the second experiment, G12.9 bolts were used, and shear failure of the bolt and bearing failure of the RTM FRP occurred simultaneously. In addition, as the thickness of the RTM FRP and the edge length of the bolt increased, the strength of the joint increased. When analogized with the bearing fracture equation of steel plate, the bolted connection of RTM FRP showed a bearing strength coefficient of 0.420 to 0.549 compared to the tensile strength, and it is considered that further research is needed.

유한요소법에 의한 얕은 기초의 지지력 및 침하 특성 연구 (A Study of Bearing Capacity and Settlement of Shallow Foundation by FEM)

  • 박종수;박춘식;장정욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1312-1319
    • /
    • 2006
  • This thesis studied the scale effects on bearing capacity and settlement characteristics by using FEM. The conclusions of the study are as follows. 1) For sandy soil, the bearing capacity ratio increased in the form of logarithm as the foundation width increased. Hence application of static mechanic theory results in overestimation of the bearing capacity when the bearing capacity should be derived from plate loading test results. 2) In clayey soil, the characteristics of the bearing capacity associated with foundation width met Terzaghi's bearing capacity theory. 3) In sandy soil, the settlement ratio increased non-linearly as foundation width increased. However, in clayey soil, the settlement ratio increased linearly. 4) In ordinary soil, the foundation width - settlement ratio turned out to be close to that of sandy soil.

  • PDF

보강된 철근콘크리트 기둥의 구조거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Strengthened Reinforced Concrete Columns)

  • 이승엽;정성원;황규표;장성재;음성우;이수곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 1997
  • In this paper, sixteen column specimens were tested under the concentrated and excentric load condition to examine the structural behavior of strengthened columns. 16 column specimens were divided into four groups. One group is not strengthened, the other three groups are strengthened by the materials : 1) steel plate, 2) carbon fiber sheet, and 3) glass fiber sheet, each group is composed of four specimens. As a result, strengthened columns have larger bearing capacity and energy absorption after ultimate load than unstrengthened columns. The column group strengthened with steel plate has the best bearing capacity among the strengthened column groups. Also, the columns strengthened with the carbon fiber sheet are similar to glass fiber sheet in bearing capacity. If necessary to strengthen columns in trouble, car should be taken to treat the joint between beam and column because of crack propagation in tension side.

  • PDF

장척레일 축력 비교 연구 (A comparison study for the Axial forte of Longer Rail)

  • 민경주;이성욱;박대희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.516-528
    • /
    • 2009
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF