• Title/Summary/Keyword: Bearing plate

Search Result 438, Processing Time 0.024 seconds

Characteristics of Bearing Capacity and Settlement According to the Difference of Loading Plate Sizes (재하판의 크기에 따른 지지력 및 침하특성)

  • 정형식;김도열
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.179-188
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from plate-load test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20, and 25cm respectively, on five different kinds of subsoils. Test results showed that the ultimate bearing capacity of a footing on the sand did not increase proportional to the traditional formula and the bearing capacity on the clay also increased a little with increasing the size of loading plate. The settlement of test plate on the sand did not increase as the traditional formula of Terzaghi and Peck (1967), and the settlement on the clay also did not increase proportional to the traditional formula.

Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect (Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험)

  • 정형식;김도열;김정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.343-354
    • /
    • 2003
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20 and 25cm, on five different kinds of subsoil. Based on the analyzed results, this paper also proposes a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Until now, uneconomic constructions have been conducted because of unreasonable evaluation in estimating bearing capacity and settlement of footings from Plate-Load Test in fields. In the application of the formula proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

Bearing Capacity and Settlement Characteristics of Weathered Granite Masses in Gyeonggi Area (경기지역 화강 풍화암반의 지지력 및 침하특성에 관한 연구)

  • Kim, Dong-Eun;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.37-47
    • /
    • 2005
  • The purpose of this study is to estimate the bearing capacity and settlement characteristics of the weathered granite masses, and on the process to achieve the purpose, in the first place, the weathered degree according to the absorption index was examined and reviewed, then plate bearings test in in-situ depth were tested, and finally the result was compared and examined with the result of the existing, estimate method and pressuremeter test. In order to achieve the purpose of this study, a typical area distributed with weathered granite masses, gyeonggi area, was chosen as a sample site for testing, and in the result, it appeared and found out that the more the weathered degree increases when the plate bearing test are tested, the more the bearing capacity decreases a numerical indexes and the more greatly the width of the decrease of bearing capacity increases around the boundary of specific, weathered degrees. Also, In the result from estimating the bearing capacity of weathered granite masses by the existing, suggested formula, it appeared that there is a tendency that the more the weathered degree increases, the more similar the bearing capacity becomes with the result of plate bearing tests.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

A Study on Dynamic Analysis and Friction Loss of Swash Plate Compressor (사판식 압축기의 동적 해석 및 마찰손실에 관한 연구)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 1998
  • A dynamic analysis and friction loss of non-variable swash plate compressor are studied theoretically. Rotating swash plate and reciprocating pistons are modelled kinematically, and forces and torques acting on rotor-bearing system are analyzed. Then, friction losses on 4 roller bearings, 10 sliding parts between swash plate and shoes, and 10 lubricating surfaces between cylinders and pistons are calculated. On each frictional element of sliding surfaces and roller bearings, the same friction loss is obtained, respectively.

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Flow Analysis in a Slipper Bearing for Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프용 Slipper Bearing내의 유동해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.343-348
    • /
    • 2008
  • In this paper, a CFD (Computational fluid dynamics) code, FLUENT is adopted to investigate accurate flow characteristics for a slipper bearing which is used swash plate type hydraulic axial piston pump. Static pressure and velocity distributions, and velocity vectors are plotted for different film thickness and slipper rotational velocity. In recess region, there exists a doughnut shaped vortex ring. The static pressure distributions are non-uniform and the flow fields are highly asymmetrical under bearing rotation. Therefore the numerical method adopted in this paper can be use in design of hydrostatic components and further studies are required.

Characteristics and Replacement of Separated Spherical Bridge Bearings (분리형 스페리칼 교량받침의 특징 및 교체실험)

  • Park, Sung-Woo;Liu, Syung-Kyu;Choi, Eun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1729-1734
    • /
    • 2008
  • This study developed a new separated shperical bridge bearing that can be used for replacement of existing bridge bearings without crushing bearing-concrete. The separated spherical bearing have the upper and lower sole plate connected by bolts to the upper plate under bridge-girders and the lower plate on bearing-concrete. The targets of the separated spherical bearing are the maximum 3 mm of up-lifting height during replacement and the maximum required time of 30 minutes. Four separated spherical bearings are manufactured and replaced the existing bearings of a railway bridge in service and the replacing tests was performed. The number of the tests is two and the target of maximum 3 mm and 30 minutes was satisfied.

  • PDF

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : I. Test-bed Construction and Field Loading Test (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : I. 시험시공과 현장재하시험)

  • Lee, Jongwon;Lee, Dongseop;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2014
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. The advantages of helical piles are no need for boring or grout process, and ability to install with relatively light devices. The bearing capacity of the helical pile is exerted by integrating the bearing capacity of each helix plate attached to the steel shaft. In this paper, to estimate the bearing capacity of moderate-size helical piles, 6 types of helical piles were constructed with different shaft diameter, plate configuration and the penetration depth. A series of field loading tests was performed to evaluate the effect of helical pile configuration on the bearing capacity of helical pile, constructed in two different shaft diameters (i.e. 73 mm and 114 mm). In the same way, the diameter of bearing plate was also changed from 400mm to 250mm with one or three plates. As well, the penetration depth was varied from 3m to 6m to analyze the relation between the penetration depth and the bearing capacity. As a result, not only the increase of the shaft diameter, but also the number or diameter of helix bearing plates enhances the bearing capacity. Especially the configuration of the helix plate is more critical than the shaft diameter.

Dynamic Behavior Analysis of Rotor-Bearing System Under External Forces in Swash Plate Compressor (외부 가진력을 고려한 사판식 압축기 회전축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The dynamic behavior of rotor-bearing system used in swash plate compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for swash plate, disk pulley and bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at swash plate and driving pulley. And, the steady state displacements of the rotor are compared with a variation in unbalance mass. Results show that the loci of rotating shaft considering unbalance forces and external compression forces are more severe in flutter motion than with only unbalance forces.