• Title/Summary/Keyword: Bearing pad

Search Result 187, Processing Time 0.025 seconds

A Study on the Lift-off Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프 저어널 베어링의 부상 특성에 관한 연구)

  • 이남수;이용복;최동훈;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.236-242
    • /
    • 2001
  • In this paper the effect of bump compliance, load, and the number of pad on the lift-off speed is studied. When the load is greater and bump compliance lower, the shaft is lifted off at higher rotating speed. And when the load is applied near the center of pad, lift-off speed is lower. When the number of pad increases, the lift-off speed is higher. The lift-off characteristics can be used to lengthen the life time of the coating and design the rotating machinery supported by bump bearings.

  • PDF

Performance Predictions of Tilting Pad Journal Bearing with Ball-Socket Pivots and Comparison to Published Test Results (볼 소켓형 피봇을 갖는 틸팅 패드 저널 베어링의 성능 예측 및 기존 결과와의 비교)

  • Kim, Tae Ho;Choi, Tae Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper predicts the rotordynamic force coefficients of tilting pad journal bearings (TPJBs) with ball-socket pivot and compares the predictions to the published test data obtained under load-between-pad (LBP) configuration. The present TPJB model considers the pivot stiffness calculated based on the Hertzian contact stress theory. Due to the compliance of the pivot, the predicted journal eccentricity agree well with the measured journal center trajectory for increasing static loads, while the early prediction without pivot model consideration underestimates it largely. The predicted pressure profile shows the significant pressure development even on the unloaded pads along the direction opposite to the loading direction. The predicted stiffness coefficients increase as the static load and the rotor speed increase. They agree excellently with test data from open literature. The predicted damping coefficients increase as the static load increases and the rotor speed decreases. The prediction underestimates the test data slightly. In general, the current predictive model including the pivot stiffness improves the accuracy of the rotordynamic performance predictions when compared to the previously published predictions.

Performance Analysis of a Vacuum-Compatible Air Bearing (진공용 공기베어링의 성능해석)

  • Khim, Gyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.103-112
    • /
    • 2006
  • This paper describes a theoretical analysis and experimental verification on the performances of a vacuum-compatible air bearing, which is designed with a cascaded exhaust scheme to minimize the air leakage in a vacuum environment. The design of the vacuum-compatible air bearing equipped with the differential exhaust system requires great care because several design parameters, such as the number of exhaust stages, diameter of exhaust tube, pumping speed of a vacuum pump, and bearing clearance greatly influence the air leakage and thus degree of vacuum. In this study, a performance analysis method was proposed to estimate the performances of the air bearing, such as load capacity, stiffness, and air leakage. Results indicate that the load capacity and stiffness of the air bearing was improved as its boundary pressure, which was determined by the $1^{st}$ exhaust method, was lowered, and the dominant factors on the chamber's degree of vacuum were the number of exhaust stages, exhaust tube diameter and bearing clearance. A vacuum chamber and air bearing stage using porous pad were fabricated to verify the theoretical analysis. The results demonstrate that chamber pressure up to an order of $10^{-3}$ Pa was achieved with the air bearing stage operating inside the chamber, and this analysis method was valid by comparing predicted values with experimental data, for the mass flow rates from the porous pad, and pressures at each exhaust port and chamber, respectively.

Preload Effects on the Metal Temperature and Shaft Vibration in a Guide Bearing for Hydraulic Pump-Turbines (펌프-터빈에서 안내 베어링의 예압이 온도 및 축 진동에 미치는 영향)

  • 하현천;양승헌;최성필;김호종
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.123-128
    • /
    • 1997
  • In-situ bearing metal temperature and shaft vibration are measured for an unload type and a preload type, m=0.87, of vertical guide bearing for hydraulic pump-turbines. Guide bearing is a tiltingpad type journal bearing consisting of eight pads whose diameter is 1,450 mm. Rotational speed is 450 rpm. Both the bearing metal temperature and the shaft vibration are very high in the unload type but are slight in the preload type, comparatively. The bearing metal temperature is decreased due to the increase of cooling effect by the increase of preload and the shaft vibration is decreased due to the increase of bearing stiffness. It is concluded that the preload effect of a guide bearing for hydraulic pump-turbines has a large influence on the bearing metal temperature and the shaft vibration.

  • PDF

Finite Element Analysis of Pivot Stiffness for Tilting Pad Bearings and Comparison to Hertzian Contact Model Calculations (유한 요소 해석을 통해 계산된 틸팅 패드 베어링의 피봇 강성과 Hertzian 접촉 모델 해석 결과 비교)

  • Lee, Tae Won;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • Recent studies emphasize the importance of pivot stiffness in the analysis of tilting pad bearings (TPBs). The present paper develops a finite element model of the pad pivot and compares the predicted pivot stiffness to the results of Hertzian contact model calculations. Specifically, a finite element analysis generates tetrahedral mesh models with ~40,000 nodes for a ball-socket pivot and ~50,000 nodes for a rocker-back pivot. These models assume a frictionless boundary condition in the contact area. Increasing the applied loads on the pad in conjunction with increasing time steps ensures rapid convergence during the nonlinear numerical analysis. Predictions are performed using the developed finite element model for increasing the differential diameters between the pad pivot (or ball) and the bearing housing (or socket). The predictions show that the pivot contact area increases with decreasing differential diameters and increasing applied loads. Further, the maximum deformation occurring at the pivot center increases with increasing differential diameters and increasing applied loads. The pivot stiffness increases nonlinearly with decreasing differential diameters and increasing applied loads. Comparisons of results of the developed finite element model to those of Hertzian contact model calculations assuming a small contact area show that the latter model underestimates the pivot stiffnesses predicted by the finite element models of the ball-socket and rocker-back pivots, particularly for small differential diameters. This result implies the need for cautionduring the design of pivot stiffness by the Hertzian contact model.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

Effects of inlet pressure build-up on the running characteristics of tilting pad thrust bearing (선단압력이 틸팅 패드 추력베어링의 운전특성에 미치는 영향)

  • 이경우;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • In this paper, an influence of inlet pressure on the running characteristics of tilting pad thrust bearing is studied by a numerical analysis. The inlet pressure is obtained from the extended Bernoulli equation including the loss coefficient which is varied with the operating conditions. The running characteristic parameters such as the minimum film thickness, the film pressure and the film thickness ratios are calculated for various runner speeds with constant load in particular two pivot positions. The results are shown that the inlet pressure has a large influence on the minimum film thickness and other running characteristic parameters.

  • PDF

The Characteristics and Estimated Stiffness of Rubber Pads for Railway Bridges (철도교량용 고무패드의 특성 및 강성 추정기법)

  • Choi Eunsoo;Kim Hyun Min;Oh Ji Taek;Kim Sungil
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.115-122
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested how to determine the stiffness the pads. The stiffness of rubber pads can be estimated by a direct static test. In the procedure to estimate the stiffness of a pad, the dead load(preload) of a bridge and live load of a vehicle are considered. The polyurethane rubber pads have larger hardness than natural and chloroprene rubber pads and thus carry larger load bearing capacity. In addition, they showed higher stiffness with the same shape factor than the others and thus are more avaliable as for bridge bearings. Although natural and chloroprene rubber pads are elongated to large deformation in horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless to the thickness and hardness of the pads. Therefore, they do not need reinforced plate to restrict horizontal deformation.

  • PDF