• Title/Summary/Keyword: Bearing pad

Search Result 187, Processing Time 0.025 seconds

Theoretical Verification on the Motion Error Analysis Method of Hydrostatic Bearing Tables Using a Transfer Function

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new method using a transfer function is introduced in the present paper for analyzing the motion errors of hydrostatic bearing tables. The relationship between film reaction force in a single-side hydrostatic pad and the form error of guide rail is derived at various spatial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called 'the averaging effect of an oil film' quantitively. It is found that the amplitude of film force is reduced as the spatial frequency increases or the relative width of the pocket is reduced. The motion errors of a multi pad type table are estimated using a transfer function, the form errors of a guide rail and the geometric relationship between the pads. The method is named as the Transfer Function Method (TFM). The motion errors calculated by the TFM show good agreement with the motion errors calculated by the Multi Pad Method considering the entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing (틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어)

  • Kwon, Tae-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

An Experimental Study on the Performance of Tilting-Pad Journal Bearing in Consideration of Ram-Pressure (패드 선단압력 발생을 고려한 틸딩-패드 저어널 베어링의 성능에 관한 실험적 연구)

  • 김승철;김경웅
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 1989
  • The influences of ram pressure on the performances of tilting-pad journal bearings are investigated experimentally. The test rig consists of a single tilting-pad and a rotating journal. Film thicknesses and pressure distribution of the lubricating film are measured continuously for several values of coordinate of the pivot position and journal speed. The findings of the investigation are as follows: (]) According as the journal speed increases the ram pressure increases, maximum pressure decreases and the pivot position which maximize the minimum film thickness shifts toward the leading edge. (2) The ram pressure makes it possible to generate the converging wedge and the positive pressure between the pad and the journal even when the pad is supported at the points between the leading edge and the center of the pad. (3) The influence of the ram pressure on the performance of tilting pad bearings is significant and must be considered in the design of these bearings.

A Study of Three Lobe Bearing Design for Turbo Compressor (터보 콤프레셔용 3로브 베어링의 설계에 관한 연구)

  • Lee, Dong-Hwan;Kim, Byung-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.549-555
    • /
    • 2006
  • Three lobe bearings for turbo compressor which appear inner pad damage after field operation has been analysed and redesigned in order to remove the problems. Pre-load and clearance between the pad and journal of the bearing were changed as design parameters from that of the original ones considering suitable maximum temperature and maximum pressure of the bearings. New hearings were manufactured corresponding the redesign. And vibration and temperature were measured according to the API specifications.

  • PDF

The Lubrication Analysis of Air-Lubricated Tilting Pad Joumal Beadng by Direct Method (공기윤활 틸팅패드 저어널 베어링의 윤활특성해석)

  • Kim, In-Sik;Hwang, Pyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.85-91
    • /
    • 1993
  • Air-Lubricated tilting pad journal bearing that has high stability is analyzed by using the direct method, and this bearing is usually used to need high precision. The pressure that supports the shaft is occured by the differences between the shaft and pads radii of curvatures. So the characteristics of load capacity for their variable values is important. In this paper the load capacity is compared with some of the eccentricity ratio values. The large load oapacity comes form large eccentricity ratio, high bearing number and high preload. But if the preload becomes too high, the shaft comes into contact with the pads. Stiffness and damping coefficients are compared with some of the preload, too. The coefficients decreased along compressibility number with constant load.

  • PDF

A Study on Repair Case of Journal and Bearing Damage for 25MW Industrial Gas Turbine (25MW급 산업용 가스터빈의 저널과 베어링 손상 보수사례에 관한 연구)

  • Kim, Byung Ok;Sun, Kyung Ho;Lee, An Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.64-69
    • /
    • 2012
  • This paper deals with the study on repair case of journal shaft and bearing damage in 25MW industrial gas turbine caused by sudden blackout, operation mistake, and logic abnormal, etc. When a serious accident such as journal and bearing damage in a gas turbine occurs, the domestic local companies having the gas turbine are dependent on manufacturer for all maintenance and repair schedule until now. This case study shows that the damaged gas turbine is normally re-operated itself in domestic by establishing repair schedule in a short period of time, repairing damage journal shaft and tilting pad bearings, and performing rotating test for a reliability check. This paper can be regarded as the important case study of emergency test run experience of the refurbished 25MW gas turbine rotor.

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor (600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;권병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

EFFECT OF LOAD ANGLE ON THE OPERATION OF TILTING 12-PADS proceeding BEARING

  • Strzelecki, S.;Someya, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.113-114
    • /
    • 2002
  • Radial, tilting 12-pad proceeding bearings are applied as the radial bearings of vertical rotors of water turbines. The mean loads are stable at the peripheral speeds of proceeding reaching 50 m/s. The operation of tilting 12-pads proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions have been obtained by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss, oil flow, maximum oil film pressure, maximum temperature have been computed for different load angle of bearing.

  • PDF

Performance Improvement of Cylindrical Turbine Guide Bearings with Pad Leading-Edge Tapers for Vertical Hydro-Power Application: Effects of Taper Angle and Length (패드 선단 테이퍼를 갖는 수력 수직 원통형 터빈 가이드 베어링의 성능향상 - 테이퍼 각도와 길이의 영향)

  • Lee, An Sung;Jang, Sun-Yong;Park, Soo Man
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Cylindrical turbine guide bearings (TGBs) with simple plain pads have conventionally been used in vertical hydro-power turbine-generator applications in order to provide turbine runner shafts with smooth rotation guides and supports. To overcome low-load/low-eccentricity performance drawbacks, such as very low film stiffness and lack of design credibility in the stiffness values themselves, of conventional cylindrical TGBs, the introduction of a rotational-directional leading-edge taper to each partitioned pad, simply pad leading-edge taper, has been found to be very effective in enhancing their design-application availability and usefulness. In this study, we investigate the effects of taper angle and length for given taper heights in detail in order to systematically establish the effectiveness of design on the performance improvement of vertical hydro-power application cylindrical TGBs with pad leading-edge tapers. The analysis results with $4-Pad{\times}1-Row$ cylindrical TGBs show that the lubrication performance of the cylindrical TGBs is optimized with an approximate taper angle ratio of 0.8 and taper length ratio of 0.9. We conclude that the introduction of pad leading-edge tapers along with the optimization of taper designs can be very effective in improving the overall operation reliability of cylindrical TGBs and the rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems as well, to which the TGBs are applied.