• Title/Summary/Keyword: Bearing integrated structure

Search Result 24, Processing Time 0.019 seconds

Development of Dual Stage Profile Shifted Gear System with Bearing-Integrated Structure for High Reduction Ratio (고감속비를 가지는 베어링일체형 구조의 2단 전위 감속기의 개발)

  • Hwang, Il-Kyu;Choi, Jung-Soo;Jung, Moon-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.312-323
    • /
    • 2012
  • Planetary gearing is a gear system consisting of one or more planet gears, revolving about a sun gear. While the planetary gear system has many advantages- for example, high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting, it has not been widely used because of its high bearing loads, inaccessibility, and design complexity. It is also necessary to shift several pairs of gear profiles at a same time. Therefore, designing profile shifted planetary gear system is a difficult and know-how dependent job. This study provides a practical solution to design a profile shifted gear system by the procedural design scheme, and proposes a bearing integrated structure of the dual stage profile shifted gear system with a robust output end. A dual stage profile shifted gear system with the bearing integrated structure is manufactured by the proposed design scheme in this study. This gear system is verified that it is good enough to commercialize, because it has high performance with high gear ratio and robust output end against axial and radial directional runouts in a small space.

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux - (반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 -)

  • Kim Ha-Yong;Kim Seung-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

The Static Performance Analysis of Foil Journal Bearings Considering Coulomb friction (마찰을 고려한 포일 저널베어링의 정특성 해석)

  • Kim, Kyung-Woong;Lee, Dong-Hyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.378-385
    • /
    • 2008
  • In foil bearings, the friction between bumps and their mating surfaces is the major factor which exerts great influence on the bearing performance. From this point of view, many efforts have been made to improve the understanding of the influence of the friction on the foil bearing performance by developing a number of analytical models. However, most of them did not consider the hysteretic behavior of the foil structure resulting from the friction. The present work developed the static structural model in which hysteretic behavior of the friction was considered. The foil structure was modeled using finite element method and the algorithm which determines the conditions of the contact nodes and the directions of the friction forces was used to take into account the friction. The developed model was integrated into the foil bearing prediction code to investigate the effects of the friction on the static performance of the bearing. The results of analysis show that multiple static equilibrium positions are presented for the one static load under the influence of the friction, inferring its great effects on the dynamic performance. However, the effect of friction on the minimum film thickness which determines load capacity of the bearing is negligible.

Seismic performance of hybrid isolation plate-shell integrated concrete LSS

  • Lei Qi;Xuansheng Cheng;Shanglong Zhang;Yuyue Bu;Bingbing Luo
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • To assess the seismic performance of Plate-Shell Integrated Concrete Liquid-Storage Structure (PSICLSS), a scaled test model was constructed. This model incorporated a hybrid isolation system, which combined shape memory alloy (SMA), lead-cored rubber isolation bearing (LRB) and sliding isolation bearing (SB). By conducting shaking table test, the dynamic responses of both non-isolated and hybrid-isolated PSICLSS were analyzed. The results show that the hybrid isolation system can effectively reduce the acceleration and displacement responses of the structure. However, it also results in an increase in local hydrodynamic pressure and liquid sloshing height. Under extreme earthquake action, the displacement of isolation layer is small. When vertical ground motion is taken into account, the shock absorption rate of horizontal acceleration decreases. The peak hydrodynamic pressure increases significantly, and the peak hydrodynamic pressure position also changes. The maximum displacement of isolation layer increases, the residual displacement decreases.

Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments (다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.385-392
    • /
    • 2014
  • The isolators have been generally used to reduce a seismic force. If the isolators apply to the nuclear power plants(NPPs), the durability and capacity for the structures and equipments should be ensured during the life time. In this study, the long-term behavior of isolated NPPs was analyzed for ensuring the seismic safety. The properties of isolator due to the age-related degradation were analyzed. And the seismic behavior of isolated buildings was analyzed by considering the aging of rubber bearings in different temperature environments. According to the analysis results, the natural frequency of structures was increased with time. But the maximum acceleration and maximum displacement of isolated structures have not changed significantly. Although the damaged of structure did not occurred by aging of isolators, it was presented that the spectral acceleration at the target frequency of isolated structure increased with the temperature. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the temperature-dependancy of rubber material.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

Rule Based System for Selection of Foundation Types of Building Structures (건물의 기초 형식 선정을 위한 규칙 기반 시스템)

  • 김한수;최창근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1996
  • A rule based system for foundation design of building structures is developed with CLIPS in this study. The types of foundation and the allowable bearing capacity of supporting soil inferred by the rule based system for selection of foundation type, called SOFTEX, are transferred to a structural design program for building foundation. The allowable bearing capacity is calculated with N values of Standard Penetration Test. The foundation types such as independent spread footing, wall footing, combined footing and mat foundation can be inferred by the foundation merge procedure developed in this study. This procedure is based on the analysis data from the super structure and the estimated bearing capacity. By using this integrated system, structural engineers with less experience in foundation design can design the foundation system for the given superstructure and the site condition with relative ease.

  • PDF

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.