• Title/Summary/Keyword: Bearing Vibration

Search Result 972, Processing Time 0.023 seconds

Faults Detection Method Unrelated to Signal to Noise Ratio in a Hub Bearing (신호대 잡음비에 무관한 허브 베어링 결함 검출 방법)

  • Choi, Young-Chul;Kim, Yang-Hann;Ko, Eul-seok;Park, Choon-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1287-1294
    • /
    • 2004
  • Hub bearings not only sustain the body of a cat, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, nitration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has Periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

Structural Analysis on Tension Bearing of Automotive Engine (자동차 엔진 텐션베어링에 대한 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.21-28
    • /
    • 2012
  • This study analyzes about automotive engine tension bearing through the structural analyses of fatigue and vibration. Maximum equivalent stress is shown at the lower of tensioner. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{6}MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of tension bearing by investigating prevention and durability against its damage.

Controller Design and Imbalance Vibration Analysis in Active Magnetic Bearing System (능동자기베어링 시스템의 제어기 설계 및 불균형 진동 분석)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.457-462
    • /
    • 2004
  • Active magnetic bearings (AMB's) have become practical in many industrial fields and numbers of studies for magnetic bearing systems have been reported. However, AMB systems are open-loop unstable and thus require feedback control for robust stabilization and performance. In this paper, first, a rotation of the rotor around the inertial axis is considered and a rigorous modeling of a magnetic bearing system in which the rotation of the rotor is on its axis of inertia is developed. Next, to stabilize the AMB system a PID controller is used and experimentally analyze its rotational response.

  • PDF

A Study on Dynamic Behavior of a Rotor-Bearing System Under External Disturbances (외란을 받는 축-베어링 시스템의 동적 거동에 대한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2002
  • The nonlinear vibration characteristics of hydrodynamic journal bearings with a circumferential groove we analyzed numerically when the external sinusoidal disturbances are given to the rotor-bearing system continuously. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis. which uses the Reynolds boundary condition. It is found that the difference between linear and nonlinear analysis is much more remarkable as the amplitude of external disturbance increases, and it depends upon the excitation frequency of the external disturbance. It is also shown that the cavity region in the fluid film increases as the amplitude or excitation frequency of the external disturbance increases. The whirling center of the steady state orbit moves closer to the bearing center as the amplitude or excitation frequency of the external disturbance increases.

Axial Permanent Magnetic Bearing Design For a Low-Loss Energy Storage Device Mounted on Hybrid Bearing System (하이브리드 베어링 지지 저손실 에너지 저장 시스템의 축방향 영구자석 베어링 설계기술 연구)

  • 경진호;김유일;최상규;김영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.272-277
    • /
    • 1997
  • The axial bearing using two ring type permanent magnets to support the weight of a flywheel is proposed to reduce the bearing loss in a flywheel energy storage , system. Two permanent magnet makes stable force in axial direction but unstable force in lateral direction. The lateral unstable stiffness is identified quantitatively using flux analysis, and then through the rotor dynamic analysis on a rigid flywheel system the unstable effects on the system by the stiffness is investigated.

  • PDF

Design and analysis of a newly devised linear flexure bearing(KIMM-Ml) for cryogenic compressors (극저온 냉동기 헬륨 압축기용 선형 탄성 베어링의 해석 및 설계)

  • 조영선;최상규;박성제;김효봉;우호길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1091-1098
    • /
    • 2003
  • Flexure bearings have been used in linear-resonant compressors to maintain a non-contacting clearance seal between the piston and cylinder. There are two types of tangential cantilever bearing and spiral arm bearing with flexure bearings. A newly devised linear flexure bearing (KIMM-Ml) for compression refrigeration machines is disclosed having improved tight gas clearance maintaining capability for better system performance. KIMM-Ml is an integrated device comprising an axially moving diaphragm with circumferentially arranged arc-shaped flexure blades secured between rim and hub spacers, which turn out to have higher radial stiffness than the one with circumferential tangential cantilever flexure blades. It is expected for KIMM-Ml to play a key role in designing long life, special purpose compression refrigeration machines by providing frictionless, non-wearing, linear movement and radial support for the machines as well as a gas clearance seal by maintaining extremely tight clearances between piston and cylinder.

  • PDF

Nonlinear Analysis on Dynamic Behavior of a Rotor-Bearing System Under External Disturbances (외란을 받는 축-베어링 시스템의 동적 거동에 대한 비선형 해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.334-339
    • /
    • 2001
  • The nonlinear vibration characteristics of hydrodynamic journal bearings with a circumferentially groove are analyzed numerically when the external sinusoidal disturbances are given to the rotor-bearing system continuously. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. It is found that the difference between linear and nonlinear analysis is much more remarkable as the amplitude of external disturbance increases, and it depends upon the excitation frequency of external disturbance. It is also shown that the cavity region in the fluid film is increased as the amplitude or excitation frequency of external disturbance increases. The whirling center of the steady state orbit moves closer to the bearing center as the amplitude or the excitation frequency of the external disturbance increases because of smaller range of full film region.

  • PDF

Dynamic Characteristics Analysis of a Rigid Rotor System Supported by Journal Air Bearings (저널 공기 베어링에 의해 지지되어진 강체 로터 계의 동특성 해석)

  • 권대규;곡순이;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1026-1031
    • /
    • 2001
  • In this paper. the dynamic characteristics of a super high-speed tilting-pad air bearing(TPGB) used in a turbo expander with high expansion ratio are analyzed. The dynamic behavior and stability of a rotary system supported by two journal air bearings are investigated numerically. The transient response of the shaft is obtained by simultaneously solving the equation of motion of the shaft and the dynamic Reynolds equation. The stiffness and damping coefficients of the bearing are calculated from the loading coefficients of the bearing are calculated from the loading capacity. shaft velocity and displacement by using a curve fitting method. The natural frequencies of the 1st and 2nd rigid modes can be calculated from these coefficients. The theoretical method of a rigid rotor system is verified by experimentsut.

  • PDF

Dynamic Analysis of Rotary Compressor with Rotor Misaligment (축어긋남을 갖는 로터리 컴프레서의 동적해석)

  • 정의봉;김태학
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.