• Title/Summary/Keyword: Bearing Ratio

Search Result 959, Processing Time 0.032 seconds

The Analysis of Shaft Center Locus in the Refrigeration & Air-conditioning Rotary Compressor (냉동.공조용 로터리 콤프레서의 축심궤적 해석)

  • 조인성;장원수;김진문;김동우;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 1996
  • Rapid increase of Refrigeration and Air conditioning system in modem industries brings attention to the urgency of core technology development in the area. This paper presents theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration and air conditioning. In order to analyze the lubrication characteristics of the main & sub bearing of rotary compressor, the bearing force and locus of shaft center are analyzed by the dynamic analysis of rotary compressor and numerical analysis of Reynolds equation as the operating condition is changed in various ways. In this paper, we used the Runge-Kutta method for the dynamic analysis of rotary compressor and the SOR (Successive OverRelaxation) method for the numerical analysis of Reynolds equation. The result shows that the operating condition of sub bearing is severer than that of main bearing, and eccentricity ratio grows as the bearing force increases. It is believed that the result can be applied to the design of alternative refrigerant rotary compressor.

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

On the Characteristics in Surface Cutting for Face Cutter of Machining Center (머시닝센터 가공시 정면커터 표면가공특성 연구)

  • Park Dal Geun;Im Dae Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.21-26
    • /
    • 2005
  • From on the machining center cutting work of 5534, the characteristics such as spindle speed and feed speed fir the third point height, average spacing of roughness peaks, bearing ratio, center line average, ten point height. experiments is roughness for sampling length determine to measuring length of cutting feed speed 200, 400, 600, 800mm/min and spindle speed 800, 1000, 1200, 1400rpm. Third point height is spindle speed with most suitable cutting condition 1000rpm. Third point height is feed speed with most suitable cutting condition 400mm/min. Average spacing of roughness peaks are spindle speed with most suitable cutting condition feed speed increased to average spacing of roughness Peaks are increased. Spindle speed increased to average spacing of roughness peaks are decreased. Bearing ratio is spindle speed with feed speed increased to bearing ratio decreased. Center line average is spindle speed with most suitable cutting condition at 1200rpm feed speed with most suitable cutting condition at 200mm/min to cutting foe roughness suddenly decreased. Ten point height is spindle speed with most suitable cutting condition 1200rpm at ten point height cutting face roughness to decreased and feed speed with most suitable cutting condition 800mm/min at ten point height cutting face roughness to decreased.

Centrifuge Modelling of Slag Compaction Pile (슬래그 다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.191-197
    • /
    • 2002
  • This paper is experimental and numerical research results of performing centrifuge model tests to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. In order to find the geotechnical engineering characteristics of the soft clay and the slag used in centrifuge model experiments, basic soil property tests, consolidation test, permeability tests and triaxial compression tests were performed. For centrifuge model tests, slags with changing relative density were used and their bearing capacity, stress concentrations in between pile and soft clay, settlement characteristics, and failure modes were investigated. As a results of centrifuge model tests, it was found that the bearing, capacity of model was increased with increasing density of slag pile and general shear failures were occured. Miniature soil pressure gauges were installed on model pile and soft ground respectively and thus vertical stress acting on them were measured. Stress concentration ratio was found to be in the range of 2.0~3.0. Bearing capacity obtained from the model test with slag was greater than that from the model test with a sand having the identical layout to each other. Thus it was confirmed the slag was an appropriate substitution of pile for sand.

  • PDF

Effect of Asymmetrical Tonic Neck Reflex on Weight Bearing of the Extremities (비대칭성 긴장성 경반사가 사지의 체중지지에 미치는 영향)

  • Kim Mi-Hyun;Kim Sang-Soo;Park Young-Han;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.7 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • The purposes of this study were 1) to compare weight distribution and ratio of the extremities between normal and hemiplegic children in quadruped position and 2) to compare the effect of ATNR on weight bearing of the extremities between normal and hemiplegic children. The subjects fer the study were 48 children(24 normal, 24 hemiplegic) between the ages 3 to 6. They were teated weight distribution and ratio of the extremities in the neutral position of head and by passive right and left rotation of the head in the quadruped position. The data wert analized by paired t-test. The results were as follows: 1. In the neutral position of head, normal group was not difference on weight distribution and ratio of the extremities and hemiplegic group was more weight bearing on the sound upper extremity than the affected upper extremity(p<.01). 2. When the head rotated to the dominant side or sound side passively, there was not a significant difference between normal and hemiplegic group. 3. When the head rotated to the nondominant side or affected side passively, there was a significant difference between nondominant upper extremity nf normal and affected upper extremity of hemiplegic group(p<.05).

  • PDF

Basic Design of Subsea Manifold Suction Bucket (심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계)

  • Woor, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

Reinfocing Effects Using Model Geocell in Sand (모래지반에서 모형 지오셀에 의한 보강 효과)

  • Yoon, Yeo Won;Kim, Poong Sik;Chun, Sung Han
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.51-59
    • /
    • 2003
  • Loading tests were carried out for model geocell to study the reinforcing effect by variation of tensile strength, cell height, soil density and embedded depth of geocell. From the result, it could be seen that the ultimate bearing capacity of the geocell system was influenced rather by the connection strength than by the tensile strength of geocell material. Bearing capacity increased with the increase of height to width ratio of geocell for the same relative density, strength and embedded depth. And the bearing capacity ratio(BCR) was higher at low relative density of sand than that of high relative density. The increase of bearing capacity was higher at geocell with high tensile strength than that of low tensile strength. And the influence was clear at higher relative density. Also the BCR was higher at shallow embedded depth of geocell. Without consideration of tensile strength of material, the application of bearing capacity formula suggested by Koerner seems not suitable for the special case with low tensile strength of geocell material.

  • PDF

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test (모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석)

  • 이인모;이정학
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 1993
  • Model pile tests in calibration chamber are performed in order to study the two factors that the pile bearing capacity is significantly influenced by. Those factors are the critical depth concept and the scale effect caused by pile diameters. Firstly, the predicted values of end bearing capacity from the various static formulae were compared with the measured ones from model pile tests. Secondly, the critical depth concept and the scale effect were investigated by using two different soil conditions in a series of calibration chamber tests : the one is uniform sand : and the other is weathered granites overlayered by sand. Main results obtained from the model tests can be summarized as follows : (1) The end bearing capacity was increased with pile penetration depth up to penetration ratio of 7 to 8 when the cell pressure is high, and the critical depth was observed in the current chamber tests with uniform sand layer , (2) The predicted end bearing capacities were mostly lager than the measured, and it was found that the differences between the predicted and the measured values became smaller as the pile penetration ratio was increased : (3) The end bearing capacity of the small diameter pile in weathered granites layer was mostly less than that of the larger pile, while in uniform sand layer it was vice.

  • PDF