• Title/Summary/Keyword: Bean By-Products

Search Result 164, Processing Time 0.025 seconds

Analysis of Genetic Diversity in Soybean Varieties Using RAPD Markers (사료작물로 이용이 가능한 한국 재배콩의 RAPD 표지인자에 의한 유전적 다양성 분석)

  • Lee, Sung-Kyu;Kim, Bum-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.277-284
    • /
    • 1998
  • Random amplified polymorphic DNA (RAPD) analysis was used to detect the genetic diversity of soybean (Glycine max (L.) Merr.) varieties and field bean (Glycine soza Sieb. and Zucc.) Five soybean varieties and one field bean were analysed with random primers using the polymerase chain reaction (PCR). Nine primers of a total twenty random primer were selected to amplify DNA segments. A total of 74 PCR products were amplified and 67.6% of which were polymorphic. The size of DNA molecule is ranged 0.13~2.0Kb and typically generated four to eight major bands. Specific genetic marker were revealed in primer sequence 5'-CAG GCC CIT C-3', 5'-TGC TCT GCC C-3' and 5'-GTC CAC ACG G-3', respectively. Genetic similarity between each of the varieties were calculated from the pair-wise comparisons of amplification products and a dendrogram was constructed by an unweighted pair-group method with arithmethical means (UPGMA). The results indicate that intervarietal relationships of soybean have a narrow genetic base and between the varieties, Hwanggum-kong and Seckryang-bootkong is more closely related than the rest of varieties, and field bean is related quite distant.

  • PDF

Hydrolysis of Galactomannan and Manno-oligosaccharides by A Bacillus subtiis Mannanase (Bacillus subtilis의 mannanase에 의한 갈락토만난과 만노올리고당의 가수분해)

  • Gwon, Min-A;Yun, Gi-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.347-351
    • /
    • 2004
  • Hydrolysis of manno-oligosaccharides and galactomannan was studied with the purified Bacillus subtilis WL-7 mannanase from recombinant Eschericoli. The predominant products of hydrolysis were mannose, mannobiose and mannotriose. The enzyme could hydrolyze $\beta$-1 A-linked manno-oligosaccharides larger than mannobiose, but was not active on mannobiose. When the mannanase hydrolyzed manno-oligo saccharides of degree of polymerization(DP) 4-6, it was more active on the substrate of higher DP. Based on analysis of transient reaction products by TLC, the enzyme was found to have a preference for internal $\beta$-IA-mannosidic linkages, which are the central mannosidic bond of mannotetraose and the two middle mannosidic bonds of mannopentaose. The $\beta$-l A-mannosidic bonds situated at the second and fourth positions from the nonreducing end of mannohexaose were preferenhydrolyzed by the mannanase. Locust bean gum(LBG) was enzymatically hydrolyzed with higher efficiency than guar gum, resulting that amount of reducing sugars was liberated more efficiently from LBG than guar gum with same activity of mannanase.

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Cui, MingYu;Wang, Qiong;Guo, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.

Study on the Practical Use of Artificial Media and Aritifical Soil for Agriculture by Standard Planting (표준재배에 따른 인공배지 및 인공토양의 농자재화를 위한 실용화연구)

  • 김선주;윤춘경;김해도;양용석
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.682-688
    • /
    • 1999
  • We threat sludge by heating methods with low pollution and high efficiency. Organic and inorganic components in Sludge can be almost removed through the heaging treatment process, and thefinal products are called artifical aoil or artificial media which are depended on temperature control. It can be recycled on the agricultural sites. Because it contained sort of organic matters while high heaging process with addition. To use them as agricultural materials, it need to know their characteristic transform in the nature. So we have planting bean and corn for two years with standard planting methods and to anticipate changing characteristics of artificial media and artificial soil by staying it natural condition, analyze it physical and chemical characteristics. This study will be contributed to reduce mass enviornmental problems by the treatment of Sludge and make it possible application for a agriculture use.

  • PDF

Properties of a Bacillus licheniformis Cellulase Produced by Recombinant Escherichia coli (대장균으로부터 생산된 Bacillus licheniformis WL-12의 Cellulase 특성)

  • Park, Jong-Duk;Kim, Yeon-A;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.257-262
    • /
    • 2009
  • Carboxymethyl celluase (cellulase) was purified from cell-free extract of the recombinant Escherichia coli carrying a Bacillus licheniformis WL-12 cellulase gene by DEAE-Sepharose and phenyl-Sepharose column chromatography with specific activity of 163 U/mg protein. The molecular mass of the purified enzyme was estimated to be approximately 49.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme had a pH optimum at 5.5 and a temperature optimum at $55^{\circ}C$. The activity of the enzyme was completely inhibited by SDS (5 mM), and slightly enhanced by $Cu^{2+}$ (5 mM). The cellulase was active on CMC, konjac, barely glucan and lichenan, while it did not exhibit activity towards xylan, locust bean gum, and p-nitrophenyl-$\beta$-glucopyranoside. The predominant products resulting from the cellulase hydrolysis were cellobiose and cellotriose for cellooligosaccharides including cellotriose, cellotetraose and cellopentaose. The enzyme could hydrolyze cellooligosaccharides larger than cellobiose.

Effect of Proximate Composition Ratios for Biogas Production

  • Kim, Min-Jee;Kim, Soo-Ah;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.155-162
    • /
    • 2017
  • Purpose: The objective of this study was to evaluate the biogas productivity of agricultural by-products (ABPs) based on their proximate composition. Specifically, the effects of proximate composition were investigated, and a new mixing method was developed using various ABPs that are difficult to digest for biogas production. Methods: Experiments were conducted to compare the biogas productivity between a single ABP and a mixture of ABPs that had the same proximate composition as the single ABP. To match the proximate compositions of radish waste and corn distiller's dried grains with solubles (DDGS), mixed ABPs were made from various ABPs. Biogas potential tests (BMP tests) were performed at an organic loading rate (OLR) of 2.5 g VS/L and a feed to microorganism ratio (F/M) of 0.5 under the mesophilic condition. Results: The individual ABPs (radish and corn DDGS) and the mixed ABPs (cabbage waste with skim milk waste, bean-curd waste with skim milk waste, and some others) produced similar amounts of biogas. Conclusions: The new mixing method based on proximate composition can be applied to other ABPs and organic wastes from factories and municipal waste treatment plants to develop renewable energy and effective waste treatment methods.

Development of the Selection Technique of Entrapment Materials for the Viability Improvement of Entrapped Bifidobacteria (포집된 Bifidobacteria의 생존력 증대를 위한 세포포집재료의 선별기술 개발)

  • 이기용;우창재;배기성;허태련
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The diffusion effect of simulated gastric juices into the various alginate vessel containing each biopolymer such as 0.3% soluble starch, whey, corn starch, agar, locust bean gum, guar gum, gum arabic, pectin, gelatin and 0.15% xanthan gum was tested by measuring the change of pH in the vessel. The degree of viability of bifidobacteria entrapped in each bead containing biopolymers was corresponded with the degree of diffusion inhibition of hydrogen into the each vessel. Therefore, The determination of diffusion inhibition of simulated gastric juices into the various vessel by measuring the change of pH in the vessel may be effectively used as the simple method to select the optimal entrapment lattice for the improvement of bifidobacteria viability. Bifidobacteria entrapped in alginate bead containing 0.15% xanthan gum whose lattice showed the lowest hydrogen diffusion were more significantly tolerant against bile salts and hydrogen peroxide than untrapped bifidobacteria. It was also observed that the viability of bifidobacteria entrapped in bead was nto nearly changed in milk adjusted pH 4.5 with organic adids at $4^{\circ}C$ for 10 days. Therefore, use of alginate containing 0.15% xanthan gum as a cell matrix for entrapping bifidobacteria was expected to improve the viability of bididobacteria in fermented milk products and develop the high value-added products.

  • PDF

Physico-Chemical and Sensory Properties of Commercial Korean Traditional Soy Sauce of Mass-Produced vs. Small Scale Farm Produced in the Gyeonggi Area (한식 간장의 이화학 및 관능적 특성 - 대기업 시판 제품과 경기지역 소규모 농가 생산 제품의 비교 -)

  • Choi, Nam-Soon;Chung, Seo-Jin;Choi, Ji-Yeon;Kim, Hye-Won;Cho, Jung-Joo
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.553-564
    • /
    • 2013
  • The core ingredient of traditional Korean style soy sauce is soy bean without any wheat or rice incorporated. National brands as well as regional micro-brewed companies constitute the soy sauce market in Korea. The present study investigated the physico-chemical and sensory properties of soy sauces produced by small-scale or mass-production. Additionally, the key physico-chemical parameters sufficiently representing the critical sensory characteristics have been identified. Ten types of soy sauce brewed by the Korean traditional method were selected for the study. Among these samples, seven types were brewed in small-scales in the Gyeonggi-do region whereas the other 3 types were mass-production products of major national brands. The total solid, reducing sugar, salinity, sugar content, amino nitrogen, CIELAB, acidity, and pH of soy sauce samples were measured for the physico-chemical analysis. A generic descriptive analysis was conducted to analyze the sensory characteristics of the samples using six trained panelists. The descriptive panel developed 21 sensory attributes. The data were statistically analyzed using ANOVA, PCA and PLSR. Overall, the micro-brewed products showed significantly higher value of salinity and acidity but lower content of reducing sugar than the mass-production products. The micro-brewed soy sauces elicited stronger fermented flavor, sourness, and bitterness whereas the national brand products elicited stronger alcoholic odor, sweetness and umami taste. Sugar content, acidity, and amino nitrogen showed strong relationships with fish sauce flavor, umami taste, and rich flavor. Salinity was closely related to the overall flavor intensity.

Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean (콩 Saponin의 생리활성 기능과 함량변이)

  • 김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.

Production and Properties of Hemicellulases by an Isolate of Microbacterium sp. (Microbacterium sp. 분리균의 Hemicellulases 생산성과 효소특성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • A bacterium producing the extracellular mannanase and xylanase was isolated from Korean farm soil by successive subcultures in a minimal medium supplemented with palm kernel meal (PKM) and rice bran. The isolate YB-1106 showed 98% similarity with Microbacterium arabinogalactanolyticum on the basis of 16S rRNA gene sequences. The additional carbohydrates including locust bean gum (LBG) and PKM increased the mannanase productivity of the YB-1106, while the xylanase productivity of the isolate was increased by wheat bran, oat spelt xylan, rice bran and xylose. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of tryptic soy broth supplemented with 1% LBG or 2% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. The mannanase of culture supernatant was the most active at $50^{\circ}C$ and pH 6.0, while xylanase of culture supernatant was the most active at $55^{\circ}C$ and pH 6.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively.