• Title/Summary/Keyword: Beam-wave interaction efficiency

Search Result 7, Processing Time 0.022 seconds

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.

A Study of High Power Microwave Output by K-band Waveguide (K-band 도파관을 이용한 대전력 마이크로파 출력장치 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.588-591
    • /
    • 2009
  • We had experimental studies of microwave output generator. We experimented with a corrugate-shped K-band slow wave guide in the backward wave oscillator. It generated output 표 interaction between electron beam's generation and magnetic field. We estimated oscillation frequency at 24GHz by changing propagation velocity and group velocity. We identified movement by second harmonic of Cherencov interaction and slow cyclotron mode. In our study we achieved oscillation stabilization, generation of long pulse, improvement of oscillation efficiency and output.

Experimental analysis of flow field for laser shock wave cleaning (레이저 충격파 클리닝에서 발생되는 유동장의 실험적 해석)

  • 임현규;장덕석;김동식
    • Laser Solutions
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The dynamics of laser-induced plasma/shock wave and the interaction with a surface in the laser shock cleaning process are analyzed by optical diagnostics. Shock wave is generated by a Q-switched Nd:YAG laser in air or with N$_2$, Ar, and He injection into the focal spot. The shock speed is measured by monitoring the photoacoustic probe-beam deflection signal under different conditions. In addition, nanosecond time-resolved images of shock wave propagation and interaction with the substrate are obtained by the laser-flash shadowgraphy. The results reveal the effect of various operation parameters of the laser shock cleaning process on shock wave intensity, energy-conversion efficiency, and flow characteristics. Discussions are made on the cleaning mechanisms based on the experimental observations.

  • PDF

Thin film acoustooptic beam deflector in proton-exchanged LiNbO$_{3}$ (양자교환된 LiNbO$_{3}$에서 박막도파형 음향광학 광변위기)

  • 김성국;백운석;김광택;정성갑;송재원
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.94-103
    • /
    • 1995
  • Thin film acoustooptic beam deflector in proton-exchanged Y-cut LiNbO$_{3}$ was fabricated and measured. The planar waveguide was fabricated by using the proton-exchanged and annealing method in Y0cut LiNbO$_{3}$. Interdigital transducer for SAW(surface acoustic wave) was made by the laser lithography. Using above method, the thin film acoustooptic beam deflector was constructed. Its SAW wavelength was 20.mu.m at 174MHz center frequency. The interaction length between guided optical wave and SAW was 2.16mm. The measured 3dB bandwidth was 17MHz using He-Ne laser. And 70% diffraction efficiency was obtained at 970mW RF driving power.

  • PDF

A Cavity-Assisted Atom Detector (CAAD) (캐비티-유도된 원자측정 장치)

  • Chough, Young-Tak;Hyuncheol Nha;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.124-125
    • /
    • 2000
  • We introduce a scheme with a maximized efficiency of detecting atoms passing through an optical standing-wave mode cavity. Consider a standing-wave optical cavity illuminated by a weak probe beam through one of its mirrors where the transmission through the other mirror is monitored by a photodetector. If an atom is put in the cavity, the atom-cavity coupling shifts the resonance frequency of the system via the so-called normal mode splitting, and thereby the transmission power will drop. In fact, this type of atom detection scheme has been used in recent single atom trap experiments In practice, however, the field in a standing-wave mode will have a geometrical structure having nodes and antinodes that when the atom traverses the cavity through one of the nodes, there will be no such effect of atom-field interaction. (omitted)

  • PDF

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF

Simulation of High-Power Magnetron Oscillators Using a MAGIC3D Code (MAGIC3D 코드를 애용한 고출력 마그네트론 발진기의 시뮬레이션)

  • Jung, S.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.538-543
    • /
    • 2006
  • A high-Power continuous-wave (CW) ten-vane double-strapped magnetron oscillator has been investigated using three-dimensional (3D) particle-in-cell (PIC) numerical simulation code, MAGIC3D. The resonant modes and their resonant frequencies of the ten-vane strapped magnetron resonator were obtained to show a large mode separation near the ${\pi}$-mode. An electron cloud formed in an anode-cathode gap, called an interaction space was confined well enough to result in no leakage current. Five spokes were clearly observed in the electron cloud, which definitely ensured the ${\pi}$-mode oscillation in the ten-vane magnetron. Numerical simulations predicted that the saturated microwave output power measured at the coaxial output port was 5.41 kW at the microwave frequency of 893 MHz, corresponding to a power conversion efficiency of 72.6% when the external axial magnetic field was 1150 gauss and the electron beam voltage and current were 6 kV and 1.25 A, respectively.