• Title/Summary/Keyword: Beam-line design

Search Result 150, Processing Time 0.023 seconds

Performance Experiment of Electron Beam Convergence Instrument (Finishing 용 전자빔 집속 장치의 성능 실험)

  • Lim, Sun Jong
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.6-8
    • /
    • 2015
  • Finishing process includes deburring, polishing and edge radiusing. It improves the surface profile of specimen and eliminates the alien substance on surface. Deburring is the elimination process for debris of edges. Polishing lubricates surfaces by rubbing or chemical treatment. There are two types for electron finishing. The one is using pulse beam. The other is using the convergent and scanning electron beam. Pulse type device appropriates the large area process. But it does not control the beam dosage. Scanning type device has advantages for dosage control and edge deburring. We design the convergence and scan type. It has magnetic lenses for convergence and scan device for scanning beam. Magnetic lenses consist of convergent and objective lens. The lenses are designed by the specification(beam size and working distance). In this paper, we evaluate the convergence performance by pattern process. Also, we analysis the results and important factors for process. The important factors for process are beam size, pressure, stage speed and vacuum. These results will be utilized into systematizing pattern shape and the factors.

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Design of Rotman Lens for Curved Array Antenna with Minimal Phase Error (최소 위상 오차를 갖는 곡선 배열안테나용 Rotman 렌즈의 설계)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1077-1086
    • /
    • 2014
  • We propose a design method of a Rotman lens for curved array antenna applicable to conformal array. In this paper, design equations are derived to obtain an array curve, transmission line lengths of a Rotman lens in conjunction with a curved array antenna, and the phase error of a Rotman lens based on these design equations is minimized through the beam curve optimization procedure and the refocusing procedure. Rotman lenses designed by the proposed design equations and design procedures still maintain 3 focal points, can feed a convex or concave array antenna with circular curve, parabolic curve, V-shaped curve, etc as well as a straight line array antenna, and have minimal phase error.

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF

Optical design of soft X-ray region monochromator (Soft X-ray 영역 단색화 장치의 광학적 설계에 관한 연구)

  • 성면창;최원국;황정남;정광호;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.86-91
    • /
    • 1992
  • We describe the design of a soft X-ray grating monochromator for synchrotron radiation in the photon energy range 300~1200eV. We investigate the optimum condition in optical parameters of CEM (cylindrical element monochromator), whose performance is well known by Dragon beam line installed recently at Brookhaven National Laboratory by C. T. Chen, fitting the parameter of PLS (Pohang Light Source) storage ring construction.

  • PDF

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Design of An X-Band Traveling-Wave Slot Array (X-대역 진행파 슬롯 배열 안테나 설계)

  • 유상길;이석곤;최재현;안병철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.455-458
    • /
    • 2002
  • Design methods are presented for an X-band traveling-wave slot array realized on a rectangular waveguide. An array of 21 longitudinal slots is realized on the broad wall of a rectangular waveguide. The squint of the antenna main beam is adjusted using the element spacing and the waveguide broad wall dimension. The excitation of the array is controlled by the slot offset from the waveguide center line Multiple I-plane steps are placed around last slot elements so that the second-order beam due to tile reflected wave Is minimized A waveguide-to-coaxial adapter Is designed for feeding the array antenna from a coaxial system. Results of the design show an outstanding performance of the antenna 17.1 dB gain. 36"beam 1111, and -21 dB maximum sidelobe level.evel.

  • PDF

Sound Radiation Analysis of Tire under The Action of Moving Line Forces (이동분포하중을 받는 타이어의 음향방사 해석)

  • Kim, Byoung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.529-532
    • /
    • 2011
  • A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dash pots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

  • PDF

Cantilever beam vibration sensor based on the axial property of fiber Bragg grating

  • Casas-Ramos, Miguel A.;Sandoval-Romero, G.E.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2017
  • In the fields of civil engineering and seismology, it is essential to detect and tracking the vibrations, and the fiber Bragg gratings (FBGs) are typically used as sensors to measure vibrations. Where, one of the most popular and detailed approaches to use FBGs as vibration sensors involves the use of cantilever beam designs, which adds a mass to measure low and moderate frequencies (from 20 Hz up to 1 kHz) with high sensitivities (greater than 10 pm/g). The design consists of a bending strain in the cantilever that is simultaneously transferred to the FBG, resulting in a shift in the wavelength that is proportional to the strain experienced by the cantilever. In this work, we present the experimental results of a vibration sensor design using a cantilever beam to generate an axial uniform strain in the FBG in-line with the vertical axis, which modifies the cantilever's natural frequency that allows the sensor to have a wide frequency broadband without losing sensitivity. This sensor achieved a sensitivity of about 339 pm/g and a natural frequency of 227.3 Hz. The presented design compared with the traditional cantilever beam-based FBG vibration sensors, has the advantages of a simple design for detection on vibration-sensitive structures and its physical parameters can be easily modified in order to satisfy the requirements of the desired vibration measurements.

Design of the Dual-Band Electrical Beam Tilting Array Antenna with Bi-Directional Directivity (양방향 지향성을 갖는 이중 대역 전기적 빔 틸팅 배열 안테나 설계)

  • Jeon, Hoo-Dong;Heo, Soo-Young;Ko, Ji-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.612-619
    • /
    • 2016
  • In this paper, a dual band electrical beam tilting array antenna with bi-directional directivity is designed. Radiating element operates at dual-resonance frequencies and is designed as planar dipole using PCB. In order to tilt the main beam, the phase delay line is designed by use of only the phase shifting line of a $50\Omega$ microstrip line for broadband. The designed antenna has tilting angle of $0^{\circ}$ to ${\pm}8^{\circ}$. For validation of the designed antenna specification, the array antenna is fabricated and the performances are measured. Comparison between theory and experiment shows good agreement.