• 제목/요약/키워드: Beam size

검색결과 1,712건 처리시간 0.032초

집속이온빔의 공정조건이 실리콘 가공에 미치는 영향 (The Parametric Influence on Focused Ion Beam Processing of Silicon)

  • 김준현;송춘삼;김종형;장동영;김주현
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

미소 외팔보의 동적해석 시 작용하는 힘들의 영향도에 관한 연구 (Study on the Influence of Applied Forces Acting on Small Scale Cantilever Beams)

  • 김관용;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.702-707
    • /
    • 2005
  • The equations of motion of the structure, which is a small scale cantilever beam considering electrostatic force, squeeze film damping and van der Waals force are obtained employing Galerkin's method based on Euler beam theory. The influence of each force is investigated fur changing the size of a small scale cantilever beam which assumed uniform shape. Also the forces which are affected by the required size of a small scale cantilever beam for manufacturing are forecasted.

  • PDF

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.

Experimental study on seismic behavior of exterior composite beam-to-column joints with large size stiffened angles

  • Wang, Peng;Wang, Zhan;Pan, Jianrong;Li, Bin;Wang, Bo
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.15-26
    • /
    • 2020
  • The top-and-seat angles with double web angles are commonly used in the design of beam-to-column joints in Asian and North American countries. The seismic behavior analysis of these joints with large cross-section size of beam and column (often connected by four or more bolts) is a challenge due to the effects from the relatively larger size of stiffened angles and the composite action from the adjacent concrete slab. This paper presents an experimental investigation on the seismic performance of exterior composite beam-to-column joints with stiffened angles under cyclic loading. Four full-scale composite joints with different configuration (only one specimen contain top angle in concrete slab) were designed and tested. The joint specimens were designed by considering the effects of top angles, longitudinal reinforcement bars and arrangement of bolts. The behavior of the joints was carefully investigated, in terms of the failure modes, slippage, backbone curves, strength degradation, and energy dissipation abilities. It was found that the slippage between top-and-seat angles and beam flange, web angle and beam web led to a notable pinching effect, in addition, the ability of the energy dissipation was significantly reduced. The effect of anchored beams on the behavior of the joints was limited due to premature failure in concrete, the concrete slab that closes to the column flange and upper flange of beam plays an significant role when the joint subjected to the sagging moment. It is demonstrated that the ductility of the joints was significantly improved by the staggered bolts and welded longitudinal reinforcement bars.

광 네트워크 용 Spot - Size Converter 설계 최적화 설계 (Design of Spot - Size Converter for optical network)

  • 석재혁;김응수
    • 한국전자통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.573-578
    • /
    • 2012
  • 광통신네트워크를 효율적으로 연결 시키기 위해 단순화 된 Spot-Size Converter 구조를 제안하였다. Spot-Size Converter를 설계하기 위해 수치해석으로 모드필드를 확인하고, 빔 전송법을 통해 최적화 설계를 도출하였다. 최적화 된 구조는 직선도파로와 Taper된 도파로를 조합하여 설계하였으며, 이를 시뮬레이션 한 결과 효율이 약 99%이상이 됨을 확인하였다.

The Influence of Poly-Si Morphology with Excimer Laser Optics System

  • Peng, Yao;Chen, C.N.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.679-683
    • /
    • 2005
  • In this study, we investigate the characteristic of the poly-Si grain and morphology influenced by XeCl excimer laser system. The stable laser beam source is basic requested; the irradiation beam through optical lens module is more important which limit the grain size smaller than $0.5{\mu}m$. The homogenization lens designs control the poly-Si grain size; so we hardly get enlarge grain size by one laser irradiation scan.

  • PDF

BPM을 이용한 안테나 배열의 집속 빔 전파 해석 (A Calculation of the Propagation for Focused Beams Using BPM)

  • 김재흥;조춘식;이재욱
    • 한국전자파학회논문지
    • /
    • 제16권5호
    • /
    • pp.465-471
    • /
    • 2005
  • 본 논문에서는 빔 전파법(BPM: Beam Propagation Method)을 이용하여 안테나 배열에서 발생된 집속된 빔의 전파 또는 집속 현상을 파악하는 방법을 제시하였다. 대물 쪽(object side)으로 적응적 집속을 위해 로트맨 렌즈를 이용하는 경우에 대해 회절이론을 바탕으로 집속 현상을 이론적으로 고찰하였다. 이를 검증하기 위해 상용 EM simulation tool을 이용하여 분석하기에는 구조물의 복잡성과 집속된 빔의 입전 설정 등 몇 가지 어려움이 있기에 이의 차선책(alternative solution)으로 푸리에 회절 이론에 기초한 빔 전파법을 이용하여 집속 현상을 계산하는 방법인 BPM을 소개하였다. 즉, 개구면을 통한 빔 전파는 Fresnel Diffraction Integral(FDI)에서 푸리에 변환 형태로 표현될 수 있으며 이는 BPM으로 발전시켜 개구면 형(aperture-type) 안테나로부터 전파되는 파의 빔 폭(beam width or spot size), 세 기(intensity or gain), 그리고 실제 초점거리를 산출하였다. $10\lambda$의 배 열 크기를 갖는 안테나에 대해 $20\lambda,\;30\lambda$, 그리고 $50\lambda$의 기하 초점거리(geometrical fecal length)를 갖는 파에 대해 BPM을 통해 계산한 결과, 빔 폭은 차례로 1.1\lambda,\;1.3\lambda,\;1.9\lambda$이 산출되었다.

철근콘크리트 보의 휨압축강도 및 변형률에 대한 크기효과 (Size Effect on Flexural Stress-Strain Relationship of Reinforced-Concrete Beams)

  • 김민수;김진근;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.911-916
    • /
    • 2002
  • It is important to consider the effect of depth when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of reinforced concrete beam was experimentally investigated. For this purpose, a series of beam specimens subjected to 2-point bending load were tested. More specifically, three different depth (d=15, 30, and 60 cm) of reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plan direction is not considered. The test results are fitted using least square method (LSM) to obtain parameters for modified size effect law (MSEL). The analysis results indicate that the flexural compression strength and ultimate strain decreases as the specimen size increases. Finally, more general parameters for MSEL are suggested.

  • PDF

유리 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구 (An experimental study for bending behavior of RC beams strengthened with glass fiber sheet)

  • 김성도;성진욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.274-280
    • /
    • 2008
  • To investigate the flexural behavior of real size RC beams strengthened with glass fiber sheets, 9 strengthened beams of real size are experimented and the results are compared with those of existing experimental studies. Experiments are considered glass fiber sheets, the number of fiber sheets, and the existence of U-wrap. By the results of experiments, the failure behavior and crack types of real size RC beams are almost equal to those of the small size RC beams, and the debonding and not the concrete cover delamination are occurred. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the ductility of real size RC beam is more decreased than that of the small size RC beam. For the strengthening method with glass fiber sheets of the real size RC beams, it can be confirmed that the finding a solution to the bonding problem is required

  • PDF