• Title/Summary/Keyword: Beam size

Search Result 1,720, Processing Time 0.029 seconds

The Significance of VEGF Expression in Stage II Carcinoma of Uterine Cervix Treated with Definitive Radiotherapy (자궁경부암 환자의 근치적 방사선치료 시 VEGF 발현의 임상적 의의)

  • Park Won;Choi Yoon-La;Huh Seung-Jae;Yoon Sang-Min;Park Young-Je;Nam Hee-Rim;Ahn Yong-Chan;Lim Do-Hoon;Park Hee-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Purpose: We wanted to determine the clinical characteristics and prognosis according to the VEGF expression in stage II cervical carcinoma patients treated with definitive radiotherapy. Materials and Methods: We enrolled 31 patients who were diagnosed with cervical cancer from 1995 to 2003 at Samsung Medical Center and their paraffin block tissue samples were available for study. The median age of the patients was 65 years. The mean tumor size was 4.1 cm $(range:\;1.2{\sim}8.2cm)$. Seven patients (22.6%) were suspected of having pelvic lymph node metastasis. An external beam irradiation dose of 45-56.4 Gy was administered to the whole pelvis with a 15 MV linear accelerator, and an additional 24 Gy was given to point A by HDR intracavitary brachytherapy. VEGF staining was defined as positive when more than 10% of the tumor cells were stained. The median follow-up duration was 58 months. Results: A positive VEGF expression was observed in 21 patients (67.7%), There was no significant correlation between the VEGF expression and pelvic lymph node metastasis, tumor size and the response of radiotherapy. During follow-up, 7 patients had recurrence. The complete response rate was not significant between the VEGF(-) and VEGF(+) tumors. However, the VEGF(+) tumors showed a significantly higher recurrence rate in comparison with the VEGF(-) tumors (p=0.040), The three year disease-free survival rates were 100% and 66.7%, respectively, for patients with VEGF(-) or VEGF(+) tumor (p=0.047), Conclusion: The VEGF expression was a significant factor for recurrence and disease-free survival. However, the significance of the VEGF expression is still controversial because of the various definitions of VEGF expression and the mismatches of the clinical data in the previous studies.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Comparison of CT based-CTV plan and CT based-ICRU38 plan in Brachytherapy Planning of Uterine Cervix Cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거한 치료계획의 비교)

  • Cho, Jung-Ken;Han, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as Point A, is still used widely. A 3-dimensional ICR plan based on CT image provides dose-volume histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planing system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume$(average{\pm}SD)$ of CTV, rectum and bladder in all of 11 patients is $21.8{\pm}6.6cm^3,\;60.9{\pm}25.0cm^3,\;111.6{\pm}40.1cm^3$ respectively. The volume covered by 100% isodose curve is $126.7{\pm}18.9cm^3$ in ICRU plan and $98.2{\pm}74.5cm^3$ in CTV plan(p=0.0001), respectively. In (On) ICRU planning, $22.0cm^3$ of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of $62.2{\pm}4.8cm^3$ other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was $90.1{\pm}21.3%$ and $68.7{\pm}26.6%$ in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was $86.4{\pm}18.3%$ and $76.9{\pm}15.6%$ in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was $137.2{\pm}50.1%,\;101.1{\pm}41.8%$ in ICRU plan and $107.6{\pm}47.9%,\;86.9{\pm}30.8%$ in CTV plan, respectively. Therefore, the radiation dose to normal organ was lower in CTV plan than in ICRU plan. But the normal tissue dose was remarkably higher than a recommended dose in CTV plan in one patient whose residual tumor size was greater than 4cm. The volume of rectum receiving more than 80% isodose (V80rec) was $1.8{\pm}2.4cm^3$ in ICRU plan and $0.7{\pm}1.0cm^3$ in CTV plan(p=0.02). The volume of bladder receiving more than 80% isodose(V80bla) was $12.2{\pm}8.9cm^3$ in ICRU plan and $3.5{\pm}4.1cm^3$ in CTV plan(p=0.005). According to these parameters, CTV plan could also save more normal tissue compared to ICRU38 plan. Conclusion : An unnecessary excessive radiation dose is irradiated to normal tissues within 100% isodose area in the traditional ICRU plan in case of a small size of cervix cancer, but if we use CTV plan based on CT image, the normal tissue dose could be reduced remarkably without a compromise of tumor dose. However, in a large tumor case, we need more research on an effective 3D-planing to reduce the normal tissue dose.

Optimum Radiotherapy Schedule for Uterine Cervical Cancer based-on the Detailed Information of Dose Fractionation and Radiotherapy Technique (처방선량 및 치료기법별 치료성적 분석 결과에 기반한 자궁경부암 환자의 최적 방사선치료 스케줄)

  • Cho, Jae-Ho;Kim, Hyun-Chang;Suh, Chang-Ok;Lee, Chang-Geol;Keum, Ki-Chang;Cho, Nam-Hoon;Lee, Ik-Jae;Shim, Su-Jung;Suh, Yang-Kwon;Seong, Jinsil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.143-156
    • /
    • 2005
  • Background: The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. Materials and Methods: The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of $23.4\~59.4$ Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-IBT) was also peformed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of $14.4\~43.2$ Gy (Median 36.0) of EBRT in 495 patients, while In the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder & rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ($\alpha/\beta$=10) and late-responding tissues ($\alpha/\beta$=3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED $Gy_3$ and the risk of complication was assessed using serial multiple logistic regression models. The associations between R-BED $Gy_3$ and rectal complications and between V-BED $Gy_3$ and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED $Gy_{10}$, and the treatment duration. Results: The overall complication rate for RTOG Grades $1\~4$ toxicities was $33.1\%$. The 5-year actuarial pelvic control rate for ail 743 patients was $83\%$. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 $Gy_{10}$ (median 93.0) for tumors and from 93.6 to 187.3 $Gy_3$ (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED $Gy_3$) and bladder Point BED (V-BED $Gy_3$) were 118.7 $Gy_3$ (range $48.8\~265.2$) and 126.1 $Gy_3$ (range: $54.9\~267.5$), respectively. MD-BED $Gy_3$ showed a good correlation with rectal (p=0.003), but not with bladder complications (p=0.095). R-BED $Gy_3$ had a very strong association (p=<0.0001), and was more predictive of rectal complications than A-BED $Gy_3$. B-BED $Gy_3$ also showed significance in the prediction of bladder complications in a trend test (p=0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. Conclusion: The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences In tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation treatment for cervix cancer. This study also demonstrated the strong predictive value of actual rectal and bladder reference dosing therefore, vaginal gauze packing might be very Important. To maintain the BED dose to less than the threshold resulting in complication, early midline shielding, the HDR-ICBT total dose and fractional dose reduction should be considered.

이온현미분석기를 사용한 남서부 경기육괴 변성암류의 U-Pb 저어콘 연대: 남중국지괴와의 대비 가능성

  • 조문섭
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.141-142
    • /
    • 2001
  • 남서부 경기육괴의 편마암류로부터 분리된 저어콘(zircon) 입자를 대상으로, 이온현미분석기(ion microprobe)를 사용한 U-Pb 연대를 구하였다. 그 결과는 후기 원생대(약 820 Ma) 뿐만 아니라 오르도비스기에 상당한 화성활동이 한반도에 있었음을 지시한다. 우리 나라 후기 원생대의 화성-변성 활동에 대해 알려져 있는 바는 극히 제한적이어서 후속연구가 필수적이며, 이러한 연구는 한반도의 지체구조적 변천사를 로디니아 초대륙(Rodinia supercontinent)의 생성-분리와 관련해 재조명할 수 있는 기회를 제공할 것이다. 또한 오르도비스기의 화성작용은 그동안 논란이 되어 왔던 소위 “칼레도니아(Caledonian)” 변동 (cf. 조문섭, 2000)에 대한 또 다른 증거를 제공해준다. 저어콘의 연대측정은 서호주의 커튼공업대학교에 설치되어 있는 SHRIMP-II(Sensitive High-Resolution Ion Microprobe-II; 고감도-고분해능 이온현미분석기)를 사용하였으며, 시료 준비 및 분석방법은 기존에 보고된 바와 같다 (e.g., Kinny et al., 1999). 분석된 3개의 암석 시료(1006-5, 8, 9)는 경기육괴의 남서부에 위치한 홍성 지역의 정편마암들이다. 1006-8 시료는 Turek and Kim (1996)이 전통적인 방법을 사용해 687$\pm$5 Ma의 U-Pb 저어콘 연대를 보고한 바 있는 화강암질 편마암 (시료번호, KJ43)에 해당된다. 두 개의 다른 시료는 1006-8 주변에서 산출하는 전형적인 경기육괴의 편마암류로서 화강암질 정편마암이다. 이들 시료로부터 분리된 저어콘 입자들은 대부분 화성기원의 누대구조와 자형의 결정형태를 보여준다. 과성장띠(overgrouth rims)는 1006-5 시료에서 흔하게, 그리고 1006-9 시료에서 매우 드물게 관찰된다. 음극선발광(cathodoluminescence) 영상의 해석을 통해 저어콘 결정의 성장사를 유추하였으며, 이를 바탕으로 이온현미분석 점(spot)을 정하였다. U-Pb-Th 자료는 퍼스(Perth) 저어콘 스탠다드 (CZ3, 564 Ma, $^{206}$Pb/$^{238}$U=0.0914)를 사용하였다. 아래에 기술하는 연대는 모두 $^{206}$Pb/$^{238}$U 연대에 해당된다. 두 개의 화강암질 편마암 시료로부터 구한 U-Pb 저어콘 연대는 각각 812 $\pm$ 14 Ma(1006-8)와 822 $\pm$ 17 Ma(1006-9)로 분석오차 내에서 서로 일치한다. 이 결과는 춘천 및 전곡 지역의 석류석 각섬암에서 보고된 Sm-Nd 전암연대(852 $\pm$ 24 Ma 및 824 $\pm$ 143 Ma; Lee and Cho, 1995; Ree et al., 1996)와 잘 부합한다. 따라서 후기 원생대 기간 중 화성활동이 한반도에서 광범위하게 일어났음을 시사한다. 한편, 1006-9 시료에서는 예외적으로 한 개의 저어콘 입자 주변부(rim)에서 매우 얇은 과성장띠가 관찰되었으며, 두 개의 점 분석으로부터 구한 U-Pb 저어콘 연대는 약 235 Ma이다. 이 띠는 또한 변성기원의 저어콘에서 흔히 관찰되는 작은 W (<0.05) 비를 보인다. 1006-5 시료는 위 두 시료로부터 수 km 떨어진 지점에서 채집하였으나, 저어콘 연대는 상이한 기록을 보여준다. 즉 매우 작은 Th/U (<0.01) 값을 갖는 저어콘의 주변부에서 223 $\pm$ 5 Ma의 연대가 잘 정의되며, 이는 1006-9 시료에서 관찰된 결과와 함께 트라이아스기의 고온변성작용이 백립암상에 가까운, 매우 높은 온도에 달하였음을 지시한다. 한편 저어콘의 중심부는 335-473 Ma의 비교적 넓은 연대 분포를 보인다. 이는 저어콘이 실제 성장한 연대를 지시하기보다는 트라이아스기의 변성작용에 따른 납손실(Pb loss) 그리고 누대 규모보다 더 큰 빔 크기(beam size, 약 30 $\mu\textrm{m}$)의 영향일 것으로 해석된다. 또한 저어콘이 다양한 외래물질로부터 기원했다는 증거가 관찰되지 않으므로, 이 정편마암의 모암은 오르도비스기(약 430-470 Ma)에 관입하였을 것으로 생각된다. 따라서 그동안 논란이 되어 왔던 소위 “칼레도니아” 변동이 한반도 내에 실존하였을 가능성을 시사한다. 이상의 결과를 종합하여 볼 때, 경기육괴의 변성암류는 후기 원생대 이후 다양한 저어콘의 성장사를 기록하고 있음을 알 수 있다: 즉 (1) 후기원생대(약 820 Ma)의 화성작용; (2) 오르도비스기(약 450 Ma)의 화성작용: 그리고 (3) 트라이아스기 (약 223 Ma)의 부분용융을 수반한 고온 변성작용으로 대표된다. 이러한 지질연대는, 옥천변성대에서 얻어진 756 Ma의 저어콘 연대(Lee et al., 1998)와 더불어, 친링-다비-수루(Qinling-Dabie-Sulu) 대륙 충돌대와 양쯔 지괴에서 보고된 지질연대 결과와 잘 부합한다. 따라서 지구연대학적으로 경기육괴가 북중국보다는 대륙충돌대를 포함하는 남중국지괴에 속할 것으로 결론지을 수 있다.

  • PDF

Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage (골격성 고정원을 이용한 상악 6전치 후방 견인시 힘의 적용점 변화에 따른 치아 이동 양상에 관한 유한 요소법적 분석)

  • Kim, Chan-Nyeon;Sung, Jae-Hyun;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.339-350
    • /
    • 2003
  • The purpose of this study was to investigate the micro-implant height and anterior hook height to prevent maxillary six anterior teeth from lingual tipping and extruding during space closure. We manufactured maxillary dental arch form, bracket and wire, using the computer aided three-dimensional finite element method. Bracket was $.022'{\times}.028'$ slot size and attached to tooth surface. Wire was $.019'{\times}.025'$ stainless steel and $.032'{\times}.032'$ stainless steel hook was attached to wire between lateral incisor and canine. Length of hook was 8mm and force application points were marked at intervals of In. Four micro-implants were implanted on alveolar bone between second premolar and first molar. The heights of them were 4, 6, 8, 10mm starting from wire. We analyzed initial displacement of teeth by various force application point applying force of 150gm to each micro-implant and anterior hook. The conclusions of 4his study are as the following : 1. When the micro-implant height was 4m and the anterior hook height was 5mm and below, anterior teeth were tipped lingually. When the anterior hook height was 6mm and above, anterior teeth were tipped labially. 2. When the micro-implant height was 6mm and the anterior hook height was 6mm and below, the anterior teeth were tipped lingually. When the anterior hook height was 6m and above, the anterior teeth were tipped labially. But lingual tipping of anterior teeth decreased and labial tipping Increased when the micro-implant height was 6mm, compared with 4mm micro-implant height. 3. When the micro-implant height was 8mm and the anterior hook height was 2mm, the anterior teeth were tipped lingually. When the anterior hook height was 3mm and above, labial tipping movement of the anterior teeth increased proportionally. 4. When the micro-implant height was 10mm and the anterior hook height was 2mm and above, labial tipping of the anterior teeth increased proportionally. 5. As the anterior hook height increased, aterior teeth were tipped more labially. But extrusion occurred on canine and premolar area because of the increase of wire distortion. 6. Movement of the posterior teeth was tipped distally during maxillary six anterior teeth retraction using micro-im plant because of the friction between bracket and were Based on the results of this study, we could predict the pattern of the tooth movement according to position of micro-implant and height of anterior hook. It seems that we can find the force application point for proper tooth movement in consideration of inclination of anterior anterior teeth, periodontal condition, overjet and overbite

Stereotactic Radiosurgery for Intracranial Tumors; Early Experience with Linear Accelerator (두개강내 종양에 대한 방사선 뇌수술의 역할)

  • Suh Chang Ok;Chung Sang Sup;Chu Sung Sil;Kim Young Soo;Yoon Do Heum;Kim Sun Ho;Loh John Juhn Kyu;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 1992
  • Between August 1988 and December 1991, 24 patients with intracranial tumors were treated with stereotactic radiosurgery(RS) using a 10 MV linear accelerator at Severance Hospital, Yonsei University College of Medicine. There were 5 meningiomas, 3 craniopharyngiomas, 9 glial tumors, 2 solitary metastases, 2 acoustic neurinomas, 2 pineal tumors, and 1 non-Hodgkin's lymphoma. Ten patients were treated as primary treatment after diagnosis with stereotactic biopsy or neuroimaging study. Nine patients underwent RS for post-op. residual tumors and three patients as a salvage treatment for recurrence after external irradiation. Two patients received RS as a boost followed by fractionated conventional radiotherapy. Among sixteen patients who were followed more than 6 months with neuroimage, seven patients (2 meningiomas, 4 benign glial tumors, one non-Hodgkin's lymphoma) showed complete response on neuroimage after RS and nine patients showed decreased tumor size. There was no acute treatment related side reaction. Late complications include three patients with symptomatic peritumoral brain edema and one craniopharyngioma with optic chiasmal injury. Through this early experience, we conclude that stereotactically directed single high doses of irradiation to the small intracranial tumors is effective for tumor control. However, in order to define the role of radiosurgery in the management of intracraniai tumors, we should get the long-term results available to demonstrate the benefits versus potential complications of this therapeutic modality.

  • PDF

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

The Study on Properties and Application of Enhanced Dynamic Wedge Factor (향상된 동적쐐기인자(Enhanced Dynamic Wedge Factor)의 특성 및 적용에 관한 고찰)

  • Kim, Dae-Sup;Ban, Tae-Joon;Yeom, Mi-Suk;Yoo, Soon-Mi;Lee, Woo-Seok;Back, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • Purpose: We try to calculate EDW-factor easily with the formula applies essential data of EDW-factor and evaluate the validity through a measurement. Materials and Methods: We used the given value of GSTT (Golden Segmented Treatment Table) for the calculation of the EDW-factor. As to the experimental device, 0.6 cc farmer-type ion-chamber, an electrometer and water- phantom were used. A measurement was made at the maximum dose depth of the photon beam energy 6 MV and 15 MV under the condition that SSD (Source to Surface Distance) was 100 cm. The angle of the EDW (Enhanced Dynamic Wedge) which we use in an experiment was 60 degree, 30 degree, 20 degree in the Y1-OUT direction. We used Eclipse planning system (Varian, USA) as RTP system and the EDW-factor was calculated about all fields and EDW direction. In order to show the EDW-factor feature, a measurement was made at the selected field that verify the influence of the dependability about X, Y jaw and off-axis field. Results: When we change the Y1 field, it influence on the EDW-Factor and measured value. But the error between measured values and calculated values was less than 1%. The experimental result indicated the tendency that the error of the result of calculation and measured value becomes smaller as the EDW angle become smaller whether the calculation point (measurement point) and iso-center are same or not. The influence of the field size and energy did not show up. We simulated with the same condition using the RTP system. And we found that it makes no difference between the MU which is calculated manually by applying the EDW-Factor obtained from the commercial program and the value which is calculated by using RTP system. Conclusion: We excluded fitting value from well-known EDW-Factor formula and calculated EDW-factor with the formula applies essential data of EDW-factor only. As a result, there are no significant difference between the measured value and calculated value and it showed errors less than 1%. Also, we implemented the commercial program to calculate EDW-Factor conveniently without measure a factor on each field.

  • PDF