• 제목/요약/키워드: Beam search

검색결과 191건 처리시간 0.026초

Sweet Spot Search of Antenna Beam using the Modified Genetic Algorithm (변형된 유전자 알고리즘을 이용한 안테나 빔의 스위트 스폿 탐색)

  • Eom, Ki-Hwan;Jung, Kyung-Kwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제42권6호
    • /
    • pp.47-54
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of antenna beam, and keep it for fast speed transmission in millimeter wave on point-to-point link. We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is the modified genetic algorithm which selects a superior initial group through slave-processing in order to resolve the local solution of genetic algorithm. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on point-to-point link.

Sweet Spot Search of Array Antenna Beam (Array 안테나 빔의 스위트 스폿 탐색)

  • Eom, Ki-Hwan;Kang, Seong-Ho;Lee, Chang-Young;NamKung, Wook;Hyun, Kyo-Hwan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2005년도 하계학술대회
    • /
    • pp.115-119
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of array antenna beam, and keep it for fast speed transmission in millimeter wave on single array antenna link. We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is the modified genetic algorithm which selects a superior initial group through slave-processing in order to resolve the local solution of genetic algorithm. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on single array antenna link.

  • PDF

Sweet Spot Search of Antenna Beam using The Two ADALINE (두개의 ADALINE을 이용한 안테나 빔의 스위트 스폿 탐색)

  • Lee, Chang-Young;Choi, Kyu-Min;Kang, Seong-Ho;Chung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.705-708
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of antenna beam, and keep it for fast speed transmission in millimeter wave on point-to-point link We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is composed of two ADALINE which used the parallel. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on point-to-point link.

  • PDF

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

Cone-beam computed tomographic evaluation of dimensional hard tissue changes following alveolar ridge preservation techniques of different bone substitutes: a systematic review and meta-analysis

  • Pickert, Finn Niclas;Spalthoff, Simon;Gellrich, Nils-Claudius;Tarraga, Juan Antonio Blaya
    • Journal of Periodontal and Implant Science
    • /
    • 제52권1호
    • /
    • pp.3-27
    • /
    • 2022
  • Purpose: This study was conducted to evaluate and compare the effects of different graft materials used in alveolar ridge preservation on dimensional hard tissue changes of the alveolar ridge, assessed using cone-beam computed tomography (CBCT) scans. Methods: A systematic electronic search of MEDLINE and the Cochrane Central Register of Controlled Trials and a manual search were conducted from November 2019 until January 2020. Randomized controlled trials were included if they assessed at least 1 variable related to vertical or horizontal hard tissue changes measured using CBCT scans. After a qualitative analysis of the included studies, subgroups were formed according to the graft material used, and a quantitative analysis was performed for 5 outcome variables: changes in vertical alveolar bone height at 2 points (midbuccal and midpalatal/midlingual) and changes in horizontal (buccolingual) alveolar bone width at 3 different levels from the initial crest height (1, 3, and 5 mm). Results: The search resulted in 1,582 studies, and after an independent 3-stage screening, 16 studies were selected for qualitative analysis and 9 for quantitative analysis. The metaanalysis showed a significantly (P<0.05) lower reduction of alveolar ridge dimensions for the xenogenic subgroup than in the allogenic subgroup, both vertically at the midbuccal aspect (weighted mean difference [WMD]=-0.20; standard error [SE]=0.26 vs. WMD=-0.90; SE=0.22) as well as horizontally at 1 mm (WMD=-1.32; SE=0.07 vs. WMD=-2.99; SE=0.96) and 3 mm (WMD=-0.78; SE=0.11 vs. WMD=-1.63; SE=0.40) from the initial crest height. No statistical analysis could be performed for the autogenic subgroup because it was not reported in sufficient numbers. Conclusions: Less vertical and horizontal bone reduction was observed when xenogenic graft materials were used than when allogenic graft materials were used; however, the loss of alveolar ridge dimensions could not be completely prevented by any graft material.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

Design Optimization for RC Frame Structures Using Direct Search Method (직접탐색법을 이용한 RC 프레임 구조물의 설계 최적화)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.583-588
    • /
    • 2007
  • For the purpose of optimum design of RC frame structures. pre-determined section database of column and beam are constructed and arranged in order of the resisting capacity. Then, regression equations representing the relation between section number and resisting capacity are derived. In advance. effective optimization algorithms which search optimized solution quickly using direct search method from these database are proposed. Moreover. the investigation for the applicability and effectiveness of the introduced design procedure is conducted through correlation study for example structures.

  • PDF

Finite Element Analysis of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 디프드로잉 공정의 유한요소해석)

  • 윤정환;유동진;양동열;김석관
    • Transactions of Materials Processing
    • /
    • 제3권4호
    • /
    • pp.468-481
    • /
    • 1994
  • Mathematical description of arbitrarily-shaped tool surface are introduced by parametric patch approaches along with the related contact search algorithm. In order to maintain the advantages of membrane elements and to incoporate the bending effect, a BEAM(Bending Energy Augmented Membrane) element is proposed. Computation are carried out for some complex axisymmetric multi-stage deep drawing to verify the validity and the effectiveness of the proposed method.

  • PDF

Effective Beam Structure for Multi-Target Detection and Tracking in the Active Electrically Scanned Array Radar (능동위상배열 레이더에서 다중표적 탐지/추적을 위한 효과적인 빔 구조 연구)

  • Lee, Joo-Hyun;Lee, Seok-Gon;Park, Dae-Sung;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제25권10호
    • /
    • pp.1069-1076
    • /
    • 2014
  • This paper presents an efficient receive beam structure able to search and track the simultaneous bundle targets with the active electrically scanned array radar. One of the characteristic with the active phased array radar is to point toward wanted direction and to forming simultaneously the digital multi-beam. This paper proposes method to detect and track rapidly bundle targets coming to radar using the digital beam forming. The proposed the beam forming method in the paper is evaluated about the angle accuracy of targets via a computer simulation.

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi;Seyed Sina Kourehli;Gholamreza Zamani-Ahari
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.263-283
    • /
    • 2024
  • This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.