• Title/Summary/Keyword: Beam path length

Search Result 30, Processing Time 0.029 seconds

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF

Straight-line Path Error Reduction for the End of a Flexible Beam Deploying from a Rotating Rigid Hub (회전하는 강체허브에서 전개하는 보 끝단의 직선궤적오차 저감)

  • Kim, Byeongjin;Kim, Hyungrae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.898-906
    • /
    • 2014
  • This paper presents a reduction method for a straight-line path error of a flexible beam deploying from a rotating rigid hub. Previous studies discussed about only vibration phenomena of flexible beams deploying from rotating hubs; however, this study investigates a vibration reduction of a rotating beam with variable length. The equation of motion and associated boundary conditions are derived for a flexible beam deploying from a rotating rigid hub, and then they are transformed to a variational equation. By applying the Galerkin method, the discretized equations are obtained from the variational equation. Based on the discretized equations, the dynamic responses of a rotating/deploying beam are analyzed when the beam end has a straight line motion. A reduction method for the trajectory error is proposed, using the average length of a rotating/deploying beam. It is shown that the proposed method is able to reduce the residual vibration of a rotating/deploying beam.

The Design of Piezo-driven mirror for the Path Length Control in a Ring Resonator (링 공명기의 경로치 제어를 위한 피에조 구동 거울의 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2551-2556
    • /
    • 2009
  • The principal operation of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflection mirrors mounted on the resonator block form the traveling waves. Thus, the dimension accuracy of resonator block influences the traveling path of beam. In order to maintain the stable optical beam path in the ring resonator, the piezo-driven moveable mirror is adopted for the path length control under the thermal expansion or mechanical strain of resonator block. This paper presents the mathematical description of the elastic behavior of piezo-driven mirror. This description can be applied for the concept design of piezo-driven mirror.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

Development of non-destructive testing method to evaluate the bond quality of reinforced concrete beam

  • Saleem, Muhammad;Almakhayitah, Abdulmalik Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • Non-destructive tests are commonly used in construction industry to access the quality and strength of concrete. However, till date there is no non-destructive testing method that can be adopted to evaluate the bond condition of reinforced concrete beams. In this regard, the presented research work details the use of ultra-sonic pulse velocity test method to evaluate the bond condition of reinforced concrete beam. A detailed experimental research was conducted by testing four identical reinforced concrete beam samples. The samples were loaded in equal increments till failure and ultra-sonic pulse velocity readings were recorded along the length of the beam element. It was observed from experimentation that as the cracks developed in the sample, the ultra-sonic wave velocity reduced for the same path length. This reduction in wave velocity was used to identify the initiation, development and propagation of internal micro-cracks along the length of reinforcement. Using the developed experimental methodology, researchers were able to identify weak spots in bond along the length of the specimen. The proposed method can be adopted by engineers to access the quality of bond for steel reinforcement in beam members. This allows engineers to carryout localized repairs thereby resulting in reduction of time, cost and labor needed for strengthening. Furthermore, the methodology to apply the proposed technique in real-world along with various challenges associated with its application have also been highlighted.

A Study on the Geometrically Nonlinear Analysis of Spatial Structures by Using Arc Length Method (호장법을 이용한 공간구조의 기하학적 비선형 해석에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kyoung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.381-386
    • /
    • 2007
  • The present study is concerned with the application of Constant arc-length method that proposed by Crisfield in the investigation of the geometrically nonlinear behaviour of spatial structures composed by truss or beam element. The arc-length method can trace the full nonlinear equilibrium path of Spatial structure far beyond the critical point such as limit or bifurcation point. So, we have developed the constant arc-length method of Crisfield to analysis spatial structure. The finite element formulation is used to develop the 3d truss/beam element including the geometrical nonlinear effect. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of Constant arc length method in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Volumetrical changes of liver associated with breathing and its impact to normal tissue complication probability (호흡에 따른 간장용적의 변화와 정상조직손상확율에 미치는 영향에 관한 연구)

  • Cho Jung Hee;Kim Joo Ho;Lee Suk;Park Je Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Purpose: The aim of this study is to investigate geometrical and volumetrical changes of liver due to breathing and its impact to NTCP. In order to attain better treatment results it should be considered deliberately during planning session. Mehtods and Materials : Seven patients were examined in this study who have done TACE for accurate tumor margin drawing. After contrast media injection, C-T scan data were obtained in supine position during breathing free, inhalation and exhalation, respectively. For all patients C-T scan were done with same scanning parameters- 5 mm index, 5 mm thickness and pitch 1. Based on C-T data we have measured differences of each variables between breathing status such as changes of total and remained liver volumes, GTV, beam path length and superior to inferior shift. NTCP were calculated using Lyman's effective volume DVH reduction scheme and for this NTCP calculation, the V50 was computed from DVH and each m, n value were referred from Burmans data. Results : The measured total tilter volume and the remained liver volume changed between inspiration and expiration about $1.2-7.7\%(mean+2.7\%)$ and $2.5-13.23\%(mean=5.8\%)$ respectively, and these results were statistically significant(p>0.1). The GTV difference in each patient varied widely from $1.17\%\;to\;30.69\%$, but this result was not statistically significant. Depending on the breathing status, the beam path length was changed from 0.5 cm to 1.1 cm with the average of 0.7 cm, and it was statistically significant(p=0.006). The measured superior to inferior shifts were ranged from 0.5 cm to 3.74 cm. The NTCPs were changed relatively small in each patient, but the variation was large between the patients. The mean NTCP difference was $10.5\%$, with the variation ranged from $7\%\;to\;23.5\%$. Conclusion : Variations of liver volume and of beam path length were changed significantly depending on the breathing statues and the range of variation itself was very different between the patients. Since this variance could seriously affect the clinical outcomes of radiation treatments, the breathing of patients need to be accounted when a final treatment planning is derided.

  • PDF

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Design of an Nd:YAG Slab Structure for a High-power Zigzag Slab Laser Amplifier Based on a Wavefront Simulation

  • Shin, Jae Sung;Cha, Yong-Ho;Cha, Byung Heon
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.236-242
    • /
    • 2019
  • An Nd:YAG slab structure was designed for a high-power zigzag slab laser amplifier based on computational simulation of the wavefront distortion. For the simulation, the temperature distribution in the slab was calculated at first by thermal analysis. Then, the optical path length (OPL) was obtained by a ray tracing method for the corresponding refractive index variation inside the slab. After that, the OPL distribution of the double-pass amplified beam was calculated by summing the results obtained for the first and second passes. The amount of wavefront distortion was finally obtained as the peak-to-valley value of the OPL distribution. As a result of this study, the length and position of the gain medium were optimized by minimizing the transverse wavefront distortion. Under the optimized conditions, the transverse wavefront distortion of the double-pass amplified beam was less than $0.2{\mu}m$ for pump power of 14 kW.