• Title/Summary/Keyword: Beam on time

Search Result 1,769, Processing Time 0.032 seconds

Study on the Dynamic Deformation Characteristics of a Cantilever Beam Undergoing Impulsive Force Using Wavelet Transformation (웨이블렛 변환을 이용한 충격력을 받는 외팔 보의 동적 변형 특성 연구)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.943-947
    • /
    • 2008
  • Dynamic response characteristics of a beam undergoing impulsive force are investigated using the wavelet transform method in this study. When an impulse is applied to an arbitrary position of a beam, it will generate a structural deformation wave. The characteristics of the wave are changing in the domain of time and space. The maximum amplitude of each natural frequency mode and the time to reach the maximum amplitude are obtained in this study. The effects of the location of impulse on the variations of the dynamic characteristics is also investigated.

  • PDF

Electron Beam -Induced Graft Polymerization of Acrylic Acid on Polypropylene Nonwoven Fabrics(II) (전자빔 가속기를 이용한 폴리프로필렌섬유의 개질(II) - 전자빔의 흡수선량 및 중합조건이 그라프트 공중합에 치는 영향 -)

  • ;N.I. Shtanko
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.154-160
    • /
    • 2003
  • Polypropylene nonwoven fabrics were grafted with acrylic acid by a preirradiation method by using electron beam accelerator. The effect of irradiation dose, storage time, concentration of acrylic acid, reaction temperature, reaction time and Mohr's salt concentration on the degree of grafting were investigated in detail. The grafted Polypropylene nonwoven fabrics were characterized using IR spectroscopy and SEM. The results showed that the degree of grafting increased with increasing absorbed dose and the Mohr's salt in the acrylic acid solution promoted grafting efficiency.

Analysis of behaviour of steel beams with web openings at elevated temperatures

  • Yin, Y.Z.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.15-31
    • /
    • 2006
  • Beams with web openings are an attractive system for multi-storey buildings where it is always desirable to have long spans. The openings in the web of steel beams enable building services to be integrated within the constructional depth of a floor, thus reducing the total floor depth. At the same time, the increased beam depth can give high bending moment capacity, thus allowing long spans. However, almost all of the research studies on web openings have been concentrated on beam behaviour at ambient temperature. In this paper, a preliminary numerical analysis using ABAQUS is conducted to develop a general understanding of the effect of the presence of web opening on the behaviour of steel beams at elevated temperatures. It is concluded that the presence of web openings will have substantial influence on the failure temperatures of axially unrestrained beams and the opening size at the critical position in the beam is the most important factor. For axially restrained beams, the effect of web openings on the beam's large deflection behaviour and catenary force is smaller and it is the maximum opening size that will affect the beam's response at very high temperatures. However, it is possible that catenary action develops in beams with web openings at temperatures much lower than the failure temperatures of the same beam without axial restraint that are often used as the basis of current design.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Utility Evaluation of Split VMAT Treatment Planning for Nasopharyngeal cancer (비인두암 Split VMAT 치료계획 유용성 평가)

  • Tae Yang Park;Jin Man Kim;Dong Yeol Kwon;Jun Taek Lim;Jong Sik Kim
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.13-20
    • /
    • 2022
  • Purpose : IMRT using Tomotherapy during nasopharyngeal cancer radiation therapy irradiate an accurate dose to tumor tissues and is effective to reduce a dose rapidly in normal tissues. However, this has high MU and long Beam On Time. This study aims to analyze differences in tumors, normal tissues and low-dose distributions and the efficiency of Split VMAT after applying Helical IMRT (Tomotherapy), VMAT (Linac : 2Arc) and Split VMAT (Linac : 4Arc) plans. Materials and Methods : This study targeted ten nasopharyngeal cancer patients of this hospital and compared three treatment plans (Helical IMRT, VMAT, Split VMAT). For Helical IMRT planning, Precision® (Version 1.1.1.1, Accuray, USA) was used, and for VMAT and Split VMAT planning, Pinnacle (Version 9.10, Philips, USA) was used. The total dose applied was 38.4 Gy / 32 Gy (Daily Dose 2.4 Gy (GTV + 0.3 cm) / 2 Gy (CTV + 0.3 cm) 16Fx), and for GTV + 0.3 cm (P_GTV), 95% of V38.4Gy was prescribed. VMAT with an angle of 360° 2Arc was applied, and for Split VMAT, the field was divided into the right, the left, the top and the bottom and an angle of 360° 4Arc, 6MV was set. For evaluating the quality of the treatment plans, differences in tumors, normal tissues and low-dose area were compared, and Beam On Time was measured to analyze the efficiency. Results : When calculating the mean values of evaluation items of the three treatment plans (Helical IMRT, VMAT, Split VMAT) for the patients, the H.I (Homogeneity Index) of P_GTV was 1.04, 1.11 and 1.1 respectively, and the C.I (Confomity Index) of P_CTV was 1.03, 0.99 and 1.00 respectively. The mean dose of RT Parotid Gland (Gy) was 14.54, 17.06 and 14.76 respectively, the mean dose of LT Parotid Gland (Gy) was 14.32, 17.32 and 15.09 respectively, the maximum dose of P_Cord (Spinal Cord + 0.3 cm) (Gy) was 20.57, 22.59 and 21.06 respectively, and the maximum dose of Brain Stem (Gy) was 22.35, 23.99 and 21.68 respectively. The 50% isodose curve (cc) was 1332, 1132.5 and 1065.2 respectively. Beam On Time (sec) was 373.7, 130.7 and 254.4 respectively. Conclusion : Displaying a similar treatment plan quality to Helical IMRT, which is used a lot for head and neck treatment, Split VMAT reduced the low-dose area and Beam On Time and produced a better result than VMAT. Therefore, it is considered that Split VMAT is effective not only for nasopharyngeal cancer but also for other head and neck cancers.

Dynamic Analysis of a High-speed Wheel Moving on an Elastic Beam Having Gap with the Consideration of Hertz Contact (간격이 있는 탄성 보 위를 고속 주행하는 바퀴의 Hertz 접촉을 고려한 동역학적 해석)

  • Lee, Ki-Su;Kim, Seok-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.253-263
    • /
    • 2012
  • With the local Hertz deformation on the contact point, the dynamic contact between a high-speed wheel and an elastic beam having a gap is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the time integration the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Especially the acceleration contact condition on the gap is formulated, and it is demonstrated that the contact force variation computed by the velocity contact constraint or by the acceleration contact constraint agrees well with that computed by the displacement contact constraint. The numerical examples show that, when the wheel passes on the gap, the solution is governed by the stiffness of the local Hertzian deformation.

The study on temperature distribution characteristic of irradiated surface by CO2 laser (온도센서를 이용한 CO2레이저 빔 조사면의 온도 분포 특성에 관한 연구)

  • Min, Byoung-Dae;Kim, Tae-Kyun;Chung, Hyun-Ju;Kim, Yong-Cheol;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1831-1833
    • /
    • 2003
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. Especially, CO2 lasers are in the spotlight at surface handling and heat processing. It is important to control the laser output power and beam quality in those fields. To increase beam qualify, We used the feedback system by various sensors. Although, CO2 lasers' output beam became feedback, its beam affected the irradiated material target already. Since, ideal real time control have still the problem to solve. Hence, we need the new proposal for more precise laser processing. So we expect the new effect how to change the irradiated material target as the kind of, processing time and output density caused by the CO2 laser beam. In this study, We have investigated the characteristics of the temperature and HAZ(Heat Affected Zone) by CO2 laser output with IR temperature sensor and RTD.

  • PDF

A Study on Structural Safety Evaluation of Improved PSC Beam Bridges Considering To-Box Reinforcement Effect (박스형 보강효과를 고려한 개선된 PSC Beam교의 구조 안전성 평가에 관한 연구)

  • Han, Sung Ho;Shin, Jae Chul;Bang, Myung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.197-211
    • /
    • 2007
  • The deteriorated PSC Beam bridge is necessary improved reinforcement method. In the study, it is proposed the box reinforcing method which could make the stiffness of the PSC Beam bridges increase more stably through the secondary composition effect of open type PSC Beam bridge's girder which is converted into the consolidation box type and the half panel is formed between the lower flange of the PSC Beam about the deteriorated PSC Beam bridge suffering the capacity decline. In case the proposed reinforcement method combine with the existed external prestressed method, the close analysis depending on the time is conducted by the construction stage because of searching the effect of reinforcement quantitatively. The reinforcement method of the box type which is proposed an efficiency improvement in objective in application case, by a reinforcement method after proposing the whole and bend sectional reinforcement method, against a each reinforcement method evaluated the upward camber which it follows in secondary composite effect and a member stress characteristics. Also, the structural safety of PSC Beam bridge is evaluated quantitatively by examining of rating factor through load carrying capacity evaluation.

Real-Time Implementation of Active Classification Using Cumulative Processing (누적처리기법을 이용한 능동표적식별 시스템의 실시간 구현)

  • Park, Gyu-Tae;Bae, Eun-Hyon;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • In active sonar system, aspect angle and length of a target can be estimated by calculating the cross-correlation between left and right split-beams of a LFM(Linear Frequency Modulated) signal. However, high-resolution performances in bearing and range are required to estimate the information of a remote target. Because a certain higher sampling frequency than the Nyquist sampling frequency is required in this performance, an over-sampling process through interpolation method should be required. However, real-time implementation of split-beam processing with over-sampled split-beam outputs on a COTS(commercial off-the-shelf) DSP platform limits its performance because of given throughput and memory capacity. This paper proposes a cumulative processing algorithm for split-beam processing to solve the problems. The performance of the proposed method was verified through some simulation tests. Also, the proposed method was implemented as a real-time system using an ADSP-TS101.