• Title/Summary/Keyword: Beam deformation

Search Result 1,215, Processing Time 0.029 seconds

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

Spectral Element Modeling of the Rotating Shafts on Bearing Supports (베어링으로 지지된 회전축의 스펙트럴요소 모델링)

  • Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.826-830
    • /
    • 2008
  • In this paper, the vibration of a rotating shaft with a thin rigid disk on bearing supports is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. And flexible supports are used to analyse the bearings. A spectral element model is developed for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

A Posteriori Error Estimation Based On The Variation Of Mapping Function For Finite Element Method (사상 함수의 변분을 이용한 유한요소 해석의 오차 분석)

  • 박시형;김지환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.86-93
    • /
    • 2002
  • A new error estimation method is proposed. This utilizes the variation of energy functional about the mapping function between the global and the master elements. The resultant system of equations is the weak form of the generalized conservation checks. However, This formulation has an important information about the relations between the connected elements. In other words, some relations between the connected elements are obtained and these can be used very usefully to measure it posteriori error. In this paper, the explicit formulations are presented for the 1-dimensional model and the 2-dimensional model problems. Numerical results are provided for first order shear deformation theody of beam model and the plane stress problem.

  • PDF

Stability of Cantilever-Type Columns under Nonconservative Load (비보존력이 작용하는 캔틸레버형 기둥의 안정성)

  • 오상진;이병구;최규문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.244-251
    • /
    • 2002
  • The purpose of this paper is to investigate the stability of tapered columns with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The column model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered columns subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. After having verified the results of the present study, the frequency and critical divergence/flutter load are presented as functions of various nondimensional system parameters.

  • PDF

Stability Analysis of Cracked cantilever beam Subjected to Follower force (유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Son, In-Soo;Kin, Dong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF

A Study on Crashworthiness for Underframe of Motorized Trailer of High Speed Train (고속전철 동력객차 언더프레임에 대한 충돌특성 연구)

  • 김헌영;김상범;한재형
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.385-392
    • /
    • 1998
  • Train crashes involve complex interaction between deformable bodies in multiple collisions. The purpose of this study is to suggest the effective analytical procedure using simple model for the crashworthiness of motorized trailer of high speed train. The simple model, with very short modeling time and reduced computation time was adopted to extract the global behaviour and to perform a pre-optimization of the considered structure. Firstly, various types of crash events are investigated and the conditions for numerical simulation are defined. The simple model, using the beam and non-linear spring element, and shell element model are used to evaluated energy absorption and deformation mechanism in analyses. And aluminum is applied to real model after verification with square tube analyses. Finally, loading path and energy absorption of main components are evaluated. The analyses are aimed to ensure the crashworthiness design of high speed train.

  • PDF

Lap Splice Strength of Reinforcing Bars on the Relitive Rib Area (상대마디면적에 따른 이형철근의 겹침이음 강도)

  • Park, Sung-Gyu;Hong, Geon-Ho;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.307-310
    • /
    • 2005
  • The effects of deformation properties on the bond of steel reinforcing bars to concrete are experimentally studies to expect the lap splice strength. Based on the previous research about relative rib area, lap splice strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. This paper describes the testing and analysis of 15 beam-spliced specimens containing D25, D22, D19 with relative rib areas ranging from 0.066 to 0.162. The tests are analyzed to determine the effect of relative rib area(Rr) on the increase in bond strength. The tests also provide a preliminary indication of the effect of high relative rib area on the splice strength of uncoated bars.

  • PDF

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations

  • Gorgun, H.;Yilmaz, S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.539-569
    • /
    • 2012
  • The behaviour of beam-to-column connections plays an important role in the analysis and design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied for three planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams (비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬)

  • Yoon Hee-Taek;Kim Moon-Young;Kim Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF