• Title/Summary/Keyword: Beam deformation

Search Result 1,215, Processing Time 0.027 seconds

전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링 (Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load)

  • 김준수;김성종;이혁;하성규;이영현
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1547-1557
    • /
    • 2013
  • 시간변화 이동자기력이 작용하는 레일의 변형을 티모센코 보 이론(Timoshenko beam theory)로 가정하였으며, 보의 진동특성에 영향을 미치는 탄성체기초의 감쇠효과 및 강성을 고려하였다. 푸리에 급수와 수치해석을 이용해 강제진동모델의 동적응답과 임계속도를 구하였다. 레일의 진동모델을 유한요소 해석 및 오일러 보 이론(Euler beam theory)과 비교 검증하였다. 강제진동모델을 이용하여 레일의 영구변형을 예측하였으며, 실험결과 레일표면의 영구변형 및 마모를 확인하였다. 보의 설계변수인 레일의 형상, 재료, 탄성체 기초의 감쇠효과 및 강성이 레일의 임계속도 및 레일의 처짐, 축 방향 응력, 전단 응력에 미치는 영향에 대한 매개변수적 연구를 진행하였으며, 보의 설계방향을 얻을 수 있었다.

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

간격이 있는 탄성 보 위를 고속 주행하는 바퀴의 Hertz 접촉을 고려한 동역학적 해석 (Dynamic Analysis of a High-speed Wheel Moving on an Elastic Beam Having Gap with the Consideration of Hertz Contact)

  • 이기수;김석승
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.253-263
    • /
    • 2012
  • With the local Hertz deformation on the contact point, the dynamic contact between a high-speed wheel and an elastic beam having a gap is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the time integration the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Especially the acceleration contact condition on the gap is formulated, and it is demonstrated that the contact force variation computed by the velocity contact constraint or by the acceleration contact constraint agrees well with that computed by the displacement contact constraint. The numerical examples show that, when the wheel passes on the gap, the solution is governed by the stiffness of the local Hertzian deformation.

실물모형 실험에 의한 탄소섬유쉬트 보강 RC 보의 휨 부착거동 (Flexural Adhesive Behavior of Full-scale RC Beams Strengthened by Carbon Fiber Sheets)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1003-1008
    • /
    • 2001
  • It is recently reported that bond failure can be initiated in the region where maximum bending moment and shear force is acted by accompanying shear deformation after flexural crack in full-scale RC beams strengthened by CFRP. Such a shear deformation effect causing bond failure is relatively little in the case of small-scale specimens. So, additional reinforcing details to the critical beam section where maximum moment and shear were acted is required to prevent the bond failure caused by the shear deformations. The U-type wrapping methods by CFRP to the critical beam section is proposed and tested in this paper. Also, the applicability of design bond strength derived from the tests of small-scale beam was investigated by the full-scale RC beam strengthened by CFRP.

  • PDF

A New Hybrid-Mixed Composite Laminated Curved Beam Element

  • Lee Ho-Cheol;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.811-819
    • /
    • 2005
  • In this study, we present a new efficient hybrid-mixed composite laminated curved beam element. The present element, which is based on the Hellinger-Reissner variational principle and the first-order shear deformation lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees in order to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the ($6{\times}6$) element stiffness matrix. The present study also incorporates the straightforward prediction of interlaminar stresses from equilibrium equations. Several numerical examples confirm the superior behavior of the present composite laminated curved beam element.

Dynamic response of a hinged-free beam subjected to impact at an arbitrary location along its span with shear effect

  • Zhang, Y.;Yang, J.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.483-498
    • /
    • 2007
  • In case of considering the shear effect, the complete solutions are obtained for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span. Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear force, have significant influence on the partitioning of dissipated energy and failure mode of the hingedfree beam. The shear effect can never be negligible when the mass ratio is comparatively small and the impact location of mass is close to the hinged end.

Electro-magneto-elastic analysis of a three-layer curved beam

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.695-703
    • /
    • 2017
  • In this paper, based on first-order shear deformation theory, the governing equations of motion for a sandwich curved beam including an elastic core and two piezo-magnetic face-sheets are presented. The curved beam model is resting on Pasternak's foundation and subjected to applied electric and magnetic potentials on the piezo-magnetic face-sheets and transverse loading. The five equations of motion are analytically solved and the bending and vibration results are obtained. The influence of important parameters of the model such as direct and shear parameters of foundation and applied electric and magnetic potentials are studied on the electro-mechanical responses of the problem. A comparison with literatures was performed to validate our formulation and results.