• Title/Summary/Keyword: Beam action

Search Result 292, Processing Time 0.02 seconds

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Feasibility study for blind-bolted connections to concrete-filled circular steel tubular columns

  • Goldsworthy, H.M.;Gardner, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.463-478
    • /
    • 2006
  • The design of structural frameworks for buildings is constantly evolving and is dependent on regional issues such as loading and constructability. One of the most promising recent developments for low to medium rise construction in terms of efficiency of construction, robustness and aesthetic appearance utilises concrete-filled steel tubular sections as the columns in a moment-resisting frame. These are coupled to rigid or semi-rigid connections to composite steel-concrete beams. This paper includes the results of a pilot experimental programme leading towards the development of economical, reliable connections that are easily constructed for this type of frame. The connections must provide the requisite strength, stiffness and ductility to suit gravity loading conditions as well as gravity combined with the governing lateral wind or earthquake loading. The aim is to develop connections that are stiffer, less expensive and easier to construct than those in current use. A proposed fabricated T-stub connection is to be used to connect the beam flanges and the column. These T-stubs are connected to the column using "blind bolts" with extensions, allowing installation from the outside of the tube. In general, the use of the extensions results in a dramatic increase in the strength and stiffness of the T-stub to column connection in tension, since the load is shared between membrane action in the tube wall and the anchorage of the bolts through the extensions into the concrete.

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

A Study on Truss Model Incorporated with Internal Force State Factor for Shear Failure Mechanism in slender RC Beam (내력상태계수 개념을 도입한 철근콘크리트 보의 전단파괴 트러스모델에 관한 연구)

  • Cheong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.609-614
    • /
    • 2001
  • This paper is to explain reasonable shear behavior that can apply usually to reinforced concrete beams on the basic concepts of existent analysis and experimental research information. This study is succession $paper^{2) 3) 4) 5)}$ of treatise announced in existing and main control variable of reinforced concrete beams with stirrups used internal force state factor($\alpha$). Shear failure of reinforced concrete beams with stirrups is Influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. Therefore, shear behavior of reinforced concrete beams with stirrups that flexural crack is happened can be explained easily through proper extent proposal of internal force state factor($\alpha$) that express internal force state flowing. Use existent variable truss model by analysis model to explain arch action. Also, wish to compose each failure factors and correlation with internal force state factor by function, and when diagonal cracks happens, internal force state factor($\alpha$) study whether shear stress and some effect are.

  • PDF

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Analytic Study on Pulsed-Laser Polishing on Surface of NAK80 Die Steel (펄스레이저에 의한 NAK80 금형강 표면연마의 해석적 연구)

  • Kim, Kwan-Woo;Kim, Seung-Hwan;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.136-141
    • /
    • 2015
  • Laser surface polishing is a polishing method for improving surface roughness using an integrated laser beam. Using a laser for surface polishing can improve the surface condition without physical contact or chemical action. Laser polishing has mainly been used to polish the surface of diamond or optical articles, such as lenses and glasses. Recently, diverse studies on laser polishing for metals have been conducted. The analytic study of laser surface polishing has been conducted with experimental trials for comparison, so that the proper conditions for laser polishing can be recommended. In this study, laser surface polishing was simulated in order to predict the heat-affected zone on the die steel depending on the power of the pulsed laser. The simulated results were verified by comparing them to those of the experimental trials. Through this study, therefore, the application of FEM to the selection of appropriate laser conditions could be possible.

Fixed system of action waveform by pulse module special quality of obstetrics and gynecology pulse style $CO_2$ laser relationship embodiment (산부인과 펄스형 $CO_2$ 레이저의 펄스모듈 특성에 의한 동작파형의 일정한 시스템의 구현)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.159-161
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

Analysis and Experiments on the Stability of Nonconservative Elastic System(Cantilever beam) subjected to Rocket Follower Force (로켓 종동력을 받는 비보존 탄성계(외팔보)의 안전성 해석 및 실험)

  • 김인성;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2467-2474
    • /
    • 1993
  • This paper deals with the cantilever subjected to a follower force which is generated by real rocket motor which has linearly decreasing thrust. The cantilever is assumed to be uniform and elastic one, In the theoretical analysis, the tip mass of rocket motor is considered as a rigid body and effects of its dynamic parameters are shown and compared with the experimental results. Particularly, the variation of the 2nd natural frequency due to the decreasing thrust is measured in the experiments and compared with the theoretical estimations. Approximate method is adopted in the theoretical analysis using Galerkin method by introducing 3-element modified operator and modified variable which represent eqation of motion and natural boundary conditions. In general, structural damping effects can be neglected and all the rigid body parameters must be taken into account in case of the short action time of the follower force and the relatively big tip mass like the system of this paper according to the experiment. Good agreement was obtained between the theoretical estimations and the experimental results by neglecting structural damping and considering all the rigid bidy parameters of the tip mass.