• Title/Summary/Keyword: Beam Steering Antenna

Search Result 109, Processing Time 0.029 seconds

Design of Dual-Polarized Waveguide Slot Array Antenna for Synthetic Aperture Radar (영상레이더용 이중편파 도파관 슬롯 안테나 설계)

  • Yi, Dong-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2008
  • In this paper, the waveguide slot array antenna which is capable of wide beam steering and dual polarization is designed for an X band synthetic aperture radar. In order to improve the restriction of beam steering range and to remove the butterfly lobes, a typical waveguide slot array antenna has been modified. To implement dual polarization, rod excited waveguide slot elements and ridge waveguide slot elements are alternately arranged. Location of slots, inclination of rod and offset distance of slots are determined on using array characteristic and conductance constant with radiating power on slots. The designed antenna is manufactured and measured with Near-filed measurement method.

Reflector Based Mobile Satellite Antenna with Novel Beam Steering Scheme (새로운 빔 조향 방식을 갖는 반사판 기반의 이동형 위성 통신 안테나)

  • Jung, Young-Bae;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • This paper proposes a hybrid antenna with novel beam steering scheme. The antenna have a cassegrain structure composed of two reflectors. The main reflector is designed for high gain performance using parabola curvature, and the sub-reflector is plate and can be rotated by ${\pm}3^{\circ}$. Thus proposed antenna can steer a antenna beam using the inclination of sub-reflector. A feed array composed of 20 elements is adapted as a feeder for electrical beam steering, and the antenna can be possible to steer the beam by the feed array with sub-reflector. Proposed antenna was fabricated to be operated in Ka-band(30.085$\sim$30.885 GHz) for TX and K-band(20.355$\sim$21.155 GHz), which are the operation frequencies of the Korean satellite, Mugunhwa, to provide satellite multi-media service to vehicles. By the performance test, it can be known that the antenna has minimum gain of 47 dBi for TX and 44.4 dBi for TX and can steer the beam by ${\pm}2^{\circ}$ with sub-reflector.

Design of a 1 × 2 Array Microstrip Antenna for Active Beam Compensation at X-band (X-밴드 능동적 빔 보상 1 × 2 배열 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • This paper presents an X-band (9.375 GHz) $1{\times}2$ array microstrip antenna which is capable of active beam compensation for installation of an unmanned aerial vehicle (UAV). First of all, a basic $1{\times}2$ array microstrip antenna incorporated with wilkinson power divider was designed and performance of the array antenna was verified. Next, to verify beam steering performance of the designed array microstrip antenna, we fabricated a phase shifter, and the wilkinson power divider as module structure and measured characteristics of beam steering according to phase shifting. The main lobe is 0.6 dBi at $0^{\circ}$, and the side lobe decreased 18.8 dB. The reliable radiation pattern was achieved. Finally, an active beam steering microstrip array antenna attached with the phase shifter and the power divider on the back side of the antenna was designed and fabricated to install wing of UAV for compactness. The maximum gain is 0.1 dBi. Therefore, we obtained a basic antenna technology for compensating beam error according to wing deformation of an UAV installed array antennas.

4-Element Circular Array Dipole Antennas with Beam Steering (지향성 절환 4소자 원형 배열 타이폴 안테나)

  • 이종녕;양규식;김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • This paper presents a basic characteristics of 4-element circular array dipole antennas for 4-sector beam steering. The coupled integral equations for the unknown current distributions on dipole elements are derived and solved by applying Galerkin's method of moments. The parasitic elements have been used to increase the directional gain and the beam is steered electronically either by sswitching between the parasitic elements or switching the position of the active element. The parasitic elements are switched short-circuited or open-circuited as required to steer a directional beam. In order to verify the theoretical analysis, the radiation pattern was compared with experiments.

Development of Base station Antenna Using Phased Away Technology (위상배열 안테나 기술을 적용한 기지국용 안테나 개발)

  • Lee, Chang-Eun;Yun, Jong-Sup;Moon, Young-Chan;Hur, Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.77-83
    • /
    • 2004
  • Based on a Phased array technology, 2-dimensionally steerable base station antenna was developed at cellular band. The antenna, which consists of 2 by 5 radiating element, can provide 14㏈i gain with half power beam width of 0$^{\circ}$and 13$^{\circ}$ in horizontal and vertical plane respectively. It has beam scanning range of 0$^{\circ}$to 12$^{\circ}$in vertical down tilting and -15$^{\circ}$to 15$^{\circ}$in horizontal steering. The beam control Performance of antenna was verified by DM measurement on field trial.

Data-link antenna for mounting low-RCS Unmanned Aerial Vehicles(UAV) (저피탐 무인기 탑재를 위한 데이터링크용 안테나에 관한 연구)

  • Park, Jin-Woo;Jung, Eun-Tae;Park, Il-Hyun;Seo, Jong-Woo;Jung, Jae-Soo;Yu, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1110-1116
    • /
    • 2021
  • In this paper, we propose a conformal Ku-band data link antenna to ensure low RCS of stealth UAV. As a phased array antenna with electrical beam steering function, a transmitter and a receiver were designed and manufactured for FDD communication, respectively. Each antenna is designed as a 12*12 planar array antenna and has a function to form a uni-directional pattern and a bi-directional pattern through phase control of unit elements. The beam steering range is designed to be able to steer up to 60 degrees in theta direction and 360 degrees in the phi direction. As a result of manufacturing and measurement, the conformal type radome has low transmission loss and meets the required specifications including system performance. The feasibility of mounting the stealth UAV has been confirmed, and future research directions such as interworking of baseband devices and conversion to digital beam steering function are suggested.

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

Planar Directional Beam Antenna Design for Beam Switching System Applications

  • Lee, Seok-Jae;Yoon, Won-Sang;Han, Sang-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • In this paper, a planar directional beam-switchable antenna with four orthogonal beam directions is proposed. The proposed antenna is designed with two crossed active elements and two parasitic elements for each direction. The design methodology is described on the basis of the Yagi-Uda method for the active and parasitic elements, respectively. By adjusting the effective electric lengths of the parasitic elements, the roles of a director and a reflector are exchanged with each other. The planar four-way beam-switchable Yagi-Uda antenna is implemented. From the experimental results. The proposed design method is verified for orthogonal radiation beam switching.

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.