• Title/Summary/Keyword: Beam Propagation Method

Search Result 223, Processing Time 0.024 seconds

dynamic localization of a mobile robot using a rotating sonar and a map (회전 초음파 센서와 지도를 이용한 이동 로보트의 동적 절대 위치 추정)

  • 양해용;정학영;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.544-547
    • /
    • 1997
  • In this paper, we propose a dynamic localization method using a rotating sonar and a map. The proposed method is implemented by using extended Kalman filter. The state equation is based on the encoder propagation model and the encoder error model, and the measurement equation is a map-based measurement equation using a rotating sonar sensor. By utilizing sonar beam characteristics, map-based measurements are updated while AMR is moving continuously. By modeling and estimating systematic errors of a differential encoder, the position is successfully estimated even the interval of the map-based measurement. Monte-Carlo simulation shows that the proposed global position estimator has the performance of a few millimeter order in position error and of a few tenth degrees in heading error and of compensating systematic errors of the differential encoder well.

  • PDF

Crosstalks of Two-Waveguide and Three-Waveguide Directional Couplers (두도파로 및 세도파로 방향성 결합기의 Crosstalk)

  • 김영문;김창민
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.54-62
    • /
    • 1998
  • The crosstalks of two-waveguide & three-waveguide directional couplers are analyzed. Advantages and disadvantages for each coupler are compared and discussed. Based on the relationship between the coupled mode and the normal mode, the mathematical expressions are derived in terms of the crosstalks for each directional coupler. Numerical techniques such as the finite-difference method and the beam propagation method are employed to testify the validity of the derived equations. The calculation results show that two-waveguide directional coupler is superior to any types of three-waveguide couplers from the practical viewpoint of the crosstalk and the coupling length.

  • PDF

Fabrication of a wavelength division multiplexer based on the polymeric arrayed-waveguide grating (폴리머 광도파로열을 이용한 파장 분할 다중화기의 제작)

  • 오태원;이원영;신상영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.70-75
    • /
    • 1997
  • a wavelength division multiplexer based on a polymeric arrayed-waveguide grating has been designed and fabricated. A 4-channel multiplexer with a spacing of 3.2 nm is designe dby using te 2-dimensional beam propagation method. A UV-curable epoxy, NOA73, is used for the core layer, and a passive polymer, PMMA, for the cladding layer. The polymer waveguides are fabricated by the reactive ion etching method and their optical properties are characterized. The fabricted device has a center wavelength of 1548.3 nm, and the wavelength spacing between the channels is 3.2nm. The measured crosstalk is better than -18dB.

  • PDF

Single-mode Condition and Dispersion of Terahertz Photonic Crystal Fiber

  • Kim, Soan;Kee, Chul-Sik;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.97-100
    • /
    • 2007
  • We have investigated properties of a plastic photonic crystal fiber guiding terahertz radiations, THz photonic crystal fiber. The single-mode condition and dispersion of a plastic triangular THz photonic crystal fiber are investigated by using the plane wave expansion method and the beam propagation method. The THz photonic crystal fiber can perform as a single-mode fiber below 2.5 THz when the ratio of diameter (d) and period (${\Lambda}$) of air holes is less than 0.475. The THz photonic crystal fiber with ${\Lambda}=500{\mu}m$ and $d/{\Lambda}=0.4$ shows almost zero flattened dispersion behavior, $-0.03{\pm}0.02 ps/THz{\cdot}cm$, in the THz frequency range from 0.8 to 2.0 THz.

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

Range Estimating Performance Evaluation of the Underwater Broadband Source by Array Invariant (Array Invariant를 이용한 수중 광대역 음원의 거리 추정성능 분석)

  • Kim Se-Young;Chun Seung-Yong;Kim Boo-Il;Kim Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-311
    • /
    • 2006
  • In this paper the performance of a array invariant method is evaluated for source-range estimation in horizontally stratified shallow water ocean waveguide. The method has advantage of little computationally effort over existing source-localization methods. such as matched field processing or the waveguide invariant and array gain is fully exploited. And. no knowledge of the environment is required except that the received field should not be dominated by purely interference This simple and instantaneous method is applied to simulated acoustic propagation filed for testing range estimation performance. The result of range estimation according to the SNR for the underwater impulsive source with broadband spectrum is demonstrated. The spatial smoothing method is applied to suppress the effect of mutipath propagation by high frequency signal. The result of performance test for range estimation shows that the error rate is within 20% at the SNR above 10dB.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

A Study on the Optical Influence by Photosensitizer in Vitro (In Vitro에서 광증감제에 의한 광학적 영향에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.182-190
    • /
    • 2005
  • The propagation of light radiation within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is important. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I\;/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements.

Preliminary Study of the Measurement of Foreign Material in Galvanic Corrosion Using Laser Ultrasonic

  • Hong, Kyung Min;Kang, Young June;Park, Nak Kyu;Choi, In Young
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.323-327
    • /
    • 2013
  • A laser ultrasonic inspection system has the advantage of nondestructive testing. It is a non-contact mode using a laser interferometer to measure the vertical displacement of the surface of a material caused by the propagation of ultrasonic signals with the remote ultrasonic generated by laser. After raising the ultrasonic signal with a broadband frequency range using a pulsed laser beam, the laser beam is focused to a small point to measure the ultrasonic signal because it provides an excellent measurement resolution. In this paper, foreign materials are measured by a non-destructive and non-contact method using the laser ultrasonic inspection system. Mixed foreign material on the corroded part is assumed and the laser ultrasonic experiment is conducted. An ultrasonic wave is generated by pulse laser from the back of the specimen and an ultrasonic signal is acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer (CFPI). The characteristic of the ultrasonic signal of existing foreign material is analyzed and the location and size of foreign material is measured.