• Title/Summary/Keyword: Beam Propagation Method

Search Result 223, Processing Time 0.027 seconds

Comparisons of Elasto-Fiber and Fiber & Bernoulli-Euler reinforced concrete beam-column elements

  • Karaton, Muhammet
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced concrete (RC) element have been developed and compared with each other. The first element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns element in both approaches are divided into a sub-element called the segment for obtaining element stiffness matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC building can be obtained within short times. In addition to, external loads of the segment are assumed to be distributed along to element. Therefore, damages can be taken account of along to element and redistributions of the loading for solutions. Bossak-${\alpha}$ integration with predicted-corrected method is used for the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according to both approaches. Damages evaluation and propagation in the frame elements are studied and response quantities from obtained both approaches are investigated in the detail.

A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements (응집 요소를 사용한 균열 진전 유한요소 해석에서 응집 법칙의 영향에 대한 연구)

  • Seo, Hyeong-Seok;Baek, Hyung-Chan;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.401-407
    • /
    • 2014
  • In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

A Study on Anomalous Propagation Echo Identification using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 이상전파에코 식별방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.89-90
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo all over the world. This paper conducts researches about a classification method which can distinguish anomalous propagation echo in the radar data using naive Bayes classifier and unique attributes of the echo such as reflectivity, altitude, and so on. It is confirmed that the fine classification results are derived by verifying the suggested naive Bayes classifier using actual appearance cases of the echo.

  • PDF

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

Numerical Study on the Wireless Communication at 550[nm], 850[nm] and 1550[nm] Wavelength LD in Fog and Pointing Error using Cassegrain Optics (카세그레인 광학계를 사용한 광무선통신 시스템에서 550[nm], 850[nm] 및 1550[nm]의 광 파장에 대한 안개 및 포인팅의 에러의 영향에 대한 해석)

  • Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.164-175
    • /
    • 2008
  • Atmospheric effects on laser beam propagation can be broken down into two categories: attenuation of the laser power and fluctuation of laser power due to laser beam deformation. Attenuation consists of scattering of the laser light photons by the fog. Laser beam deformation occurs because of small-scale dynamic changes in the index of refraction of the atmosphere. This causes pointing error. In order to analyse these effect on optical wireless communication system, in this paper uses cassegrain optics as a transmitting and receiving telescope, AID as a detecting device and ill as a light source. The signal modulating and demodulating method is a IM/DD. I show the effects of fog and pointing error and calculate the possible communication distance for BER is $10^{-9}$.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

A study on design method of waveguide grating router composed of star couplers (성형결합기로 구성된 광도파로 격자 라우터의 설계방법에 관한 연구)

  • 문성욱;정영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2526-2532
    • /
    • 1996
  • In this paper, the efficient algorithm for design of waveguide grating router(WGR) composed of star couplers is proposed. It is well demostrated that a star coupler design can be easily adjusted to the optimumstate using the proposed design method, which analyzes relations between various parameters. This method enables designers to estimate the spectral properties of waveguide grating router at the initial design level of the star coupler. A 5*5 WGR with 2.75nm(343GHz) channel spacing is designed using the proposed scheme. The BPM(Beam Propagation Method) simulation results show that the channel spacing of the WGR agrees very well with the design, the excess loss is smaller than 2.5dB, and the crosstalk is less than -21dB.

  • PDF

The Analysis of Light Coupling and Propagation for The Composite Fiber-Dielectric Slab with a Conductor Cladding Using The Three Dimensional Finite Difference-Beam Propagating Method (3차원 FD-BPM을 이용한 측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파 특성의 해석)

  • 권광희;송재원;이동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.754-762
    • /
    • 2003
  • The coupled and propagated property of the composite side-polished fiber and infinite planar waveguide with conductor cladding (PWGCC) is presented by using the 3-D finite difference beam propagating method (FD-BPM) in according to the variety of refractive indexes between the fiber and the infinite planar waveguide. It is also introduced for the technique to be applied at and consisted of the analysis domain of 3-D FD-BPM for the coupling between the side-polished fiber and PWG. It is also compared the properties of coupling between the side-polished fiber and PWGCC with them of the general symmetric and asymmetric PWG without perfect conductor (PEC), which has been investigated by many researcher.

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.

Structural behaviors of notched steel beams strengthened using CFRP strips

  • Yousefi, Omid;Narmashiri, Kambiz;Ghaemdoust, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • This paper presents the findings of experimental and numerical investigations on failure analysis and structural behavior of notched steel I-beams reinforced by bonded Carbon Fiber Reinforced Polymer (CFRP) plates under static load. To find solutions for preventing or delaying the failures, understanding the CFRP failure modes is beneficial. One non-strengthened control beam and four specimens with different deficiencies (one side and two sides) on flexural flanges in both experimental test and simulation were studied. Two additional notched beams were investigated just numerically. In the experimental test, four-point bending method with static gradual loading was employed. To simulate the specimens, ABAQUS software in full three dimensional (3D) case and non-linear analysis method was applied. The results show that the CFRP failure modes in strengthening of deficient steel I-beams include end-debonding, below point load debonding, splitting and delamination. Strengthening schedule is important to the occurrences and sequences of CFRP failure modes. Additionally, application of CFRP plates in the deficiency region prevents crack propagation and brittle failure.