• Title/Summary/Keyword: Beam Expansion

Search Result 224, Processing Time 0.031 seconds

Modelling on Sheath Expansion of Two-dimensional Grid Electrodes

  • Yi, Changho;Namkung, Won;Cho, Moohyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.243.1-243.1
    • /
    • 2014
  • For two-dimensional grid electrodes immersed in plasmas, sheath expansion due to negative high-voltage pulse applied to the electrode generates high-energy pseudowave. The high-energy pseudowave can be used as ion beam for ion implantation. To estimate ion dose due to high-energy pseudowave, investigation on sheath expansion of grid electroes is necessary. To investigate sheath expansion, an analytic model was developed by Vlasov equation and applying the 1-D sheath expansion model to 2-D. Because of lack of generalized 2-D Child-Langmuir current, model cannot give solvable equation. Instead, for a given grid electrode geometry, the model found the relations between ion distribution functions, Child-Langmuir currents, and sheath expansions. With these relations and particle-in-cell (PIC) simulations, for given grid electrode geometry, computation time was greatly reduced for various conditions such as electrode voltages, plasma densities, and ion species. The model was examined by PIC simulations and experiments, and they well agreed.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

Numerical comparison of the beam model and 2D linearized elasticity

  • Fabijanic, Eva;Tambaca, Josip
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.621-633
    • /
    • 2009
  • In this paper we compare the solution of the one-dimensional beam model and the numerical solution of the two-dimensional linearized elasticity problem for rectangular domain of the beam-like form. We first derive the beam model starting from the two-dimensional linearized elasticity, the same way it is derived from the three-dimensional linearized elasticity. Then we present the numerical solution of the two-dimensional problem by finite element method. As expected the difference of two approximations becomes smaller as the thickness of the beam tends to zero. We then analyze the applicability of the one-dimensional model and verify the main properties of the beam modeling for thin beams.

Evaluation of the stability of maxillary expansion using cone-beam computed tomography after segmental Le Fort I osteotomy in adult patients with skeletal Class III malocclusion

  • Kim, Hoon;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.48 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of this study is to quantitatively evaluate the stability of the skeletal and dental widths using cone-beam computed tomography (CBCT) after segmental Le Fort I osteotomy in adult patients with skeletal Class III malocclusion requiring maxillary expansion. Methods: In total, 25 and 36 patients with skeletal Class III malocclusion underwent Le Fort I osteotomy (control group) and segmental Le Fort I osteotomy (experimental group), respectively. Coronal CBCT images were used to measure the dental and skeletal widths before (T1) and after (T2) surgery and at the end of treatment (T3). The correlation between the extent of surgery and the amount of relapse in the experimental group was also determined. Results: In the control group, the dental width exhibited a significant decrease of $0.70{\pm}1.28mm$ between T3 and T2. In the experimental group, dental and skeletal expansion of $1.83{\pm}1.66$ and $2.55{\pm}1.94mm$, respectively, was observed between T2 and T1. The mean changes in the dental and skeletal widths between T3 and T2 were $-1.41{\pm}1.98$ and $-0.67{\pm}0.72mm$, respectively. There was a weak correlation between the amount of skeletal expansion during segmental Le Fort I osteotomy and the amount of postoperative skeletal relapse in the experimental group. Conclusions: Maxillary expansion via segmental Le Fort I osteotomy showed good stability, with a skeletal relapse rate of 26.3% over approximately 12 months. Our results suggest that a greater amount of expansion requires greater efforts for the prevention of relapse.

Comparison of the effects of rapid maxillary expansion and alternate rapid maxillary expansion and constriction protocols followed by facemask therapy

  • Ozbilen, Elvan Onem;Yilmaz, Hanife Nuray;Kucukkeles, Nazan
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • Objective: The aim of this retrospective study was to evaluate and compare the changes in the pharyngeal airway (PA), maxillary sinus volume, and skeletal parameters after rapid maxillary expansion (RME) and alternate rapid maxillary expansion and constriction (Alt-RAMEC) followed by facemask (FM) therapy. Methods: The records of 40 patients with skeletal Class III malocclusion due to maxillary retrognathism were collected, and the patients were assigned into two groups. The first group comprised 8 male and 12 female patients (mean age, $10.0{\pm}1.1years$) treated using RME/FM for an average of 10 months. The second group comprised 10 male and 10 female patients (mean age, $9.64{\pm}1.3years$) treated using Alt-RAMEC/FM for an average of 12 months. Cone-beam computed tomography images acquired before (T0) and after treatment (T1) were evaluated. Results: Regarding the skeletal effects, significant differences between the groups were the increase in ANS-HRP (perpendicular distance of ANS to the horizontal reference plane, 0.99 mm, p <0.05) in the Alt-RAMEC/FM group and the decrease in PP-SN (palatal plane to Sella-Nasion plane, $0.93^{\circ}$, p < 0.05) in the RME/FM group. Maxillary sinus volumes increased significantly in both the groups, and the increase was statistically significantly higher in the Alt-RAMEC/FM group. Although no significant intergroup differences were observed in PA volumes, both lower ($1,011.19mm^3$) and total ($1,601.21mm^3$), PA volume increased significantly in the Alt-RAMEC/FM group. Conclusions: The different expansion devices and protocols used with FM therapy do not seem to affect the forward movement of the maxilla and PA volumes. In contrast, the increase in maxillary sinus volume was greater in the Alt-RAMEC/FM protocol.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

DESIGN OF A BENDING MAGNET FOR THE KSTAR NBI SYSTEM

  • In, Sang-Ryul;Yoon, Byeong-Joo;Kim, Beom-Yeol
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.793-802
    • /
    • 2006
  • The design concept of a bending magnet to be installed in the KSTAR NBI system is presented. It is the function of a bending magnet that removes unconverted ions from the main beam stream and produces an 8 MW, 120 keV deuterium neutral beam. In order to determine the proper size and shape of the bending magnet, a parametric study on the B-field pattern was carried out by changing the dimensions of the pole face model. In addition, the detailed trajectories of the dominant ion species produced in the beam line were calculated. The electrical and cooling parameters of the coil assembly were also estimated.

Natural Frequency of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 사각평판의 고유진동수)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.908-913
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes appear. The proposed analytical method is verified by observing a good agreement to three dimensional finite element analysis results. All natural frequency of the in-phase modes can be predicted well by the combination of the dry beam modes. The theoretical prediction for the out-of-phase mode can be improved by using the polynomial functions satisfying the plate boundary conditions and fluid volume conservation instead of using dry beam modes.

  • PDF

A dynamic analysis of three-dimensional functionally graded beams by hierarchical models

  • Giunta, Gaetano;Koutsawa, Yao;Belouettar, Salim;Calvi, Adriano
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.637-657
    • /
    • 2014
  • This paper presents a dynamic analysis of three-dimensional beams. Structures made of functionally graded materials are considered. Several higher-order as well as classical theories are derived by means of a compact notation for the a-priori expansion order of the displacement field over the beam cross-section. The governing differential equations and boundary conditions are obtained in a condensed nuclear form that does not depend on the kinematic hypotheses. The problem is, then, exactly solved in space by means of a Navier-type solution, whereas time integration is performed by means of Newmark's solution scheme. Slender and short simply supported beams are investigated. Results are validated towards three-dimensional FEM results obtained via the commercial software ANSYS. Numerical investigations show that good accuracy can be obtained through the proposed formulation provided that the appropriate expansion order is considered.