References
- Aganovi , I. and Tutek, Z. (1986), 'A justification of the one-dimensional linear model of elastic beam', Math. Method. Appl. Sci., 8, 1-14 https://doi.org/10.1002/mma.1670080102
- Albarracín, C.M. and Grossi, R.O. (2005), 'Vibrations of elastically restrained frames', J. Sound Vib., 285, 467-476 https://doi.org/10.1016/j.jsv.2004.09.013
- Andreuzzi, F. and Perrone, A. (2001), 'Analytical solution for upheaval bucklingin burried pipeline', Comput. Meth. Appl. Mech. Eng., 190, 5081-5087 https://doi.org/10.1016/S0045-7825(00)00366-2
- Chen, D.W. and Liu, T.L. (2006), 'Free and forcedvibrations ofa tapered cantilever beam carrying multiple point masses', Struct. Eng. Mech., 23(2), 209-216 https://doi.org/10.12989/sem.2006.23.2.209
- Ciarlet, P.G. (1990), Mathematical Elasticity, Vol. II: Theory of Plates, North-Holland
- Ciarlet, P.G. (1997), Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland
-
Ciarlet, P.G. and Destuynder, P. (1979), 'A justification of the two dimensional linear plate model', J. M
$\dot{e}$ canique, 18, 315-344 - Gu, U.C. and Cheng, C.C. (2004), 'Vibration analysis of a high-speed spindle under the action of a moving mass', J. Sound Vib., 278, 1131-1146 https://doi.org/10.1016/j.jsv.2003.10.034
- Hecht, F., Pironneau, O., Le Hyaric, A. and Ohtsuka, K. (2005), Freefem++ manual, http://www.freefem.org/ff++
- Hili, M.A., Fakhfakh, T. and Haddar, M. (2007), 'Vibration analysis of a rotating exible shaft-disk system', J. Eng. Math., 57, 351-363 https://doi.org/10.1007/s10665-006-9060-3
- Igawaa, H., Komatsub, K., Yamaguchia, I. and Kasaia, T. (2004), 'Wave propagation analysis of frame structures using the spectral element method', J. Sound Vib., 277, 1071-1081 https://doi.org/10.1016/j.jsv.2003.11.026
- Iimura, S. (2004), 'Simplified mechanical model for evaluating stress in pipeline subject to settlement', Constr. Build. Mater., 18, 469-479 https://doi.org/10.1016/j.conbuildmat.2004.01.002
- Jurak, M. and Tamba a, J. (1999), 'Derivation and justification of a curved rod model', Math. Model. Meth. Appl. Sci., 9(7), 991-1014 https://doi.org/10.1142/S0218202599000452
- Jurak, M. and Tamba a, J. (2001), 'Linear curved rod model. General curve', Math. Model. Meth. App. Sci., 11(7), 1237-1252 https://doi.org/10.1142/S0218202501001318
- Kim, J.T. (2004), 'Identification of prestress-loss in PSC beams using modal information', Struct. Eng. Mech., 17(3-4), 467-482 https://doi.org/10.12989/sem.2004.17.3_4.467
- Li, G.Q. and Guo, S.X. (2008), 'Analysis of restrained steel beams subjected to heating and cooling. Part I: Theory', Steel Compos. Struct., 8(1), 1-18
- Lu, Z.R., Liu, J.K. and Law, S.S. (2008), 'Identification of prestress force in a prestressed Timoshenko beam', Struct. Eng. Mech., 29(3), 241-258 https://doi.org/10.12989/sem.2008.29.3.241
- Rafii-Tabar, H. (2004), 'Computational modelling of thermo-mechanical and transport properties of carbon nanotubes', Phys. Rep., 390, 235-452 https://doi.org/10.1016/j.physrep.2003.10.012
- Rajasekaran, S. and Varghese, S.P. (2005), 'Damage detection in beams and plates using wavelet transforms', Comput. Concrete, 2(6), 481-498 https://doi.org/10.12989/cac.2005.2.6.481
- Trabucho, L. and Via o, J.M. (1996), Mathematical Modelling of Rods, in Handbook of Numerical Analysis, Vol. IV, Eds. P.G. Ciarlet, J. L. Lions, North-Holland
- Vanegas Useche, L.V., Abdel Wahab, M.M. and Parker, G.A. (2007), 'Dynamics of an unconstrained oscillatory flicking brush for road sweeping', J. Sound Vib., 307, 778-801 https://doi.org/10.1016/j.jsv.2007.07.010
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), 'Vibration of an embedded multiwall carbon nanotube', Compos. Sci. Technol., 63, 1533-1542 https://doi.org/10.1016/S0266-3538(03)00058-7
Cited by
- Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect vol.38, pp.5, 2009, https://doi.org/10.12989/sem.2011.38.5.573