• Title/Summary/Keyword: Beam Element

Search Result 2,860, Processing Time 0.026 seconds

A New and Efficient C0 Laminated Curved Beam Element (효율적인 C0 적층 곡선보 요소의 개발)

  • Kim, Jin-Gon;Kang, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • In this study, we present a new highly accurate two-dimensional curved composite beam element. The present element, which is based on the Hellinger-Reissner variational principle and classical lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the (9x9) element stiffness matrix. It should be noted that the stacking sequences without transverse deformation to the load plane makes a two dimensional analysis of curved composite beams practically useful . Several numerical examples confirm the superior locking-free behavior of the present higher-order laminated curved beam element.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

Equivalent Beam Joint Modeling and Vibration Analysis Using Vehicle Side Key Sections (차체 Side Key Section 을 이용한 등가빔 결합부 모델링 및 강성해석)

  • Sung, Young-Suk;Yim, Hong-Jae;Kim, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.252-257
    • /
    • 2006
  • Low vibration characteristics of a vehicle are mainly influenced by the local stiffness of the joint structure beam section. The method of substituting equivalent beam element to spring element for the joint is presented. Formation process of the equivalent beam joint modeling is described in terms of key section properties. To get required dynamic characteristics section properties of the equivalent beam element are set to design variables. The study shows that the equivalent beam joint model can be effectively used for low frequency vibration analysis of a vehicle.

  • PDF

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Spectral Element Analysis of a PCLD beam (수동적층보의 스펙트럴요소 해석)

  • You, Sung-Jun;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.619-624
    • /
    • 2007
  • Spectral element method (SEM) is introduced for the fully coupled structural dynamic problems, In this paper, the beam with passive constrained layered damping (PCLD) treatments is considered as a representative problems. The beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an elastic layer, The fully coupled equations of motion for a PCLD beam are derived, The equations of motion are derived first by using Hamilton's principle, From this equations of motion, the spectral element is formulated for the vibration analysis by use of the SEM, As an illustrative example, a cantilevered beam is considered. It is shown that, as the thickness of VEM layer vanishes, the results become a simple layer beam's that.

  • PDF

Experimental damage identification of cantilever beam using double stage extended improved particle swarm optimization

  • Thakurdas Goswami;Partha Bhattacharya
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.591-606
    • /
    • 2024
  • This article proposes a new methodology for identifying beam damage based on changes in modal parameters using the Double Stage Extended Improved Particle Swarm Optimization (DSEIPSO) technique. A finite element code is first developed in MATLAB to model an ideal beam structure based on classical beam theory. An experimental study is then performed on a laboratory-scale beam, and the modal parameters are extracted. An improved version of the PSO algorithm is employed to update the finite element model based on the experimental measurements, representing the real structure and forming the baseline model for all further damage detection. Subsequently, structural damages are introduced in the experimental beam. The DSEIPSO algorithm is then utilized to optimize the objective function, formulated using the obtained mode shapes and the natural frequencies from the damaged and undamaged beams to identify the exact location and extent of the damage. Experimentally obtained resultsfrom a simple cantilever beam are used to validate the effectiveness of the proposed method. The illustrated results show the effectiveness of the proposed method for structural damage detection in the SHM field.

Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations (힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Dynamics of an Axially Moving Timoshenko Beam (축방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joohong;Hyungmi Oh;Lee, Usik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.403-403
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. (omitted)

  • PDF

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF