• Title/Summary/Keyword: Beam Attenuation

Search Result 164, Processing Time 0.026 seconds

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF

Study on the Feasibility of High-Temperature Immersion Ultrasonic Sensor with a Strip Waveguide (도파띠를 이용한 고온 액침 초음파센서의 가능성 연구)

  • Choi, M.S.;Lee, J.P.;Jung, T.E.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.3
    • /
    • pp.151-156
    • /
    • 1994
  • Exertion has been made to develop high-temperature (about $250{\sim}650^{\circ}C$) immersion ultrasonic sensor for the visualization of objects, temperature measurement, dimensional check, or nondestructive testing of welds under liquid sodium. In this study, the feasibility of the ultrasonic sensor taking advantage of a strip waveguide was confirmed by water-experiment. The lowest order of antisymmetric Lamb wave was used in the frequency range with negligible dispersion. This plate wave was excited in the stainless steel strip waveguide of 1.0mm thickness and 13mm width by the comb-structure transducer of 2.3MHz frequency. Its attenuation coefficient was 1.2dB/m in air and 380dB/m in water. The signal to noise ratio of 25dB was obtained from a planar reflector 270mm away from the beam aperture of $13mm{\times}39mm$ size.

  • PDF

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

The Analysis of Ultrasonographic Findings in Breast Carcinoma (유방암에 있어서 초음파 소견의 분석)

  • Lee, Jin-Wook;Hwang, Mi-Soo;Park, Bok-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.269-274
    • /
    • 1992
  • Authers retrospectively analyzed ultrasonographic findings of 12 cases of breast carcinomas which were proven pathologocally at Yeungnam University Hospital from March 1992 to August 1992. Classically, breast carcinomas were described as irregular and lobulated hypoechoic solid masses with inhomogenous internal echoes and frequent attenuation of the sound beam. And other additional ultrasonographic findings were echogenic rim, disruptions of superficial layer, microcalcification, skin thickening and so on. In our studies, not all of these findings of breast carcinomas were found in each case, but most of these findings were noted. However, several studies have demonstrated considerable overlap in the ultrasonographic appearance of benign lesions and carcinoma. Thus, accurate sonographic determination of the type of solid mass is not possible with current ultrasonographic imaging techniques and criteria. For more accurate diganosis of breast lesions, sonographic and other imaging techniqes are interpreted together.

  • PDF

Overexposed Accidents due to Erroneous Input to Treatment Planning System in Japan

  • Tabushi, Katsuyoshi;Endo, Masahiro;Ikeda, Hiroshi;Uchiyama, Yukio;Hoshina, Masao;Nakagawa, Keiichi;Sakai, Kunio
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.11-12
    • /
    • 2002
  • Accidental overexposures by radiotherapy have gathered attention recently in Japan. The widely publicized accidents have occurred at the government official benefit society hospital and at the hospital affiliated to a medical school. The accident at the government official benefit society hospital occurred when one of two existing accelerators was renewed. A radiotherapy planning system was also introduced at that time. Then treatment planning for the old and the new linear accelerator was performed using the system. There were variations in wedge factors for the 30 degrees wedge filter between the old and the new linear accelerator. That is, the difference in the structure of the wedge filter (30 degrees) resulted in variations of the wedge factors between both accelerators. In order to keep strength, a lead board was backed to the lead wedge filter for the new linear accelerator, whereas the wedge filter for the old one was made of the iron. The X-ray attenuation of the iron wedge filter is smaller than that of the lead wedge filter. The basic beam data of the old linear accelerator, however, wasn't delivered properly between the user and the maker. Then, the accident took place because the same wedge factor was used for the old and the new linear accelerator. On the other hand, the accident which occurred at the university hospital was brought about by the input mistake in initialization of the computer system when a linear accelerator was introduced. The input mistake was found when the software of the system was updated. If the dose had been measured and confirmed adequately, the accidents could have been prevented in both cases.

  • PDF

Medium to Long Range Wireless Video Transmission Scheme in 5.8GHz Band (5.8GHz 대역에서의 중장거리 영상 전송 무선 방식)

  • Paik, Junghoon;Kim, Namho;Ji, Mingi
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.662-671
    • /
    • 2016
  • In this paper, we propose a wireless video transmission system, providing medium and long communication distance in the 5.8GHz band to decrease the loss of video data. Beamforming with multiple antennas in a radio environment to enable more than 10km communication distance and an image transmission method that combines the retransmission to MCS(modulation and coding scheme) are applied. By applying the proposed method in the indoor environment of 80dB attenuation using the payload size of 1000 bytes, the packet loss rate of at least 0.92% is achieved through the FPING with the time-out of 10ms. The transmission distance of 21.2Km is achieved with the transmission rate of 13Mbps in the outdoor environment.

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.