• Title/Summary/Keyword: Bead height control

Search Result 21, Processing Time 0.023 seconds

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF

A Study on Bead Height Control of GMAW by Short Circuit Time Ratio (단락시간비를 이용한 GMAW의 비드 높이 제어에 관한 연구)

  • 감병오;조상명;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2002
  • This paper shows the experimental results controlling the height of surface and back bead in GMAW by analyzing the unexpected gaps between base metals produced in welding and by controlling welding velocity due to the variation of the gap between base metals in thin-plate welding. The back bead behavior and burn-through in I-type butt joint $CO_2$ welding of thin mild steel are analyzed in the views of short circuit time ratio and short circuit frequency. It is shown through experimental consideration that the short circuit time ratio method is more reasonable than the short circuit frequency method in analyzing the formulation of back bead under changing the gap between base metals. Based on the these results, welding manipulator is designed so as to satisfy the bead height control in real time by measuring the short circuit time ratio. To show the effectiveness of the developed bead formulation control system, the experiment is implemented under two welding conditions such as increasing gap from 0mm to 0.8mm and gradually increasing gap from 0mm to 1.2mm. The experimental results show that the bead formulation can be controlled uniformly in spite of the variation of the gap between base metals.

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

Control of Bead Geometry in GMAW (GMAW에서 비드형상제어에 관한 연구)

  • 이재범;방용우;오성원;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1997
  • In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.

  • PDF

Development of Automatic Filet Welding Torch System with High Speed Rotating Arc Sensor

  • Lee, W.K.;Lee, G.Y.;Kim, J.H.;Kim, S.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.1-94
    • /
    • 2001
  • Arc sensor gives important groove information during welding. Automatic seam tracking control system with arc sensor has significant characteristics such that bead formation is given as decentralization of penetration and formation of concave bead profile and that a turning point of transverse weaving with constant arc length control is decided whether or not torch height reaches to a specified setting level. Furthermore, the rotating action of the arc prevents hanging of weld bead and forms flat bead surface under high speed welding condition. The variation of groove and deposition area can be detected from the trace of weaving. The area and width of weaving trace has close correlation with the area of groove and deposition. In this paper, main object of this system is to realize an adaptive microprocessor based controller ...

  • PDF

A Study on the Selection of Optimal Neural Network for the Prediction of Top Bead Height (표면 비드높이 예측을 위한 최적의 신경회로망 선정에 관한 연구)

  • Son Joon-Sik;Kim In-Ju;Kim Ill-Soo;Jang Kyeung-Cheun;Lee Dong-Gil
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.66-70
    • /
    • 2005
  • The full automation of welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to select an optimal neural network model.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

Control of Molten Pool by Physical Force of Bead Former in TIG Welding of Overhead and Inclined-up Position (위보기 및 경사상진자세의 TIG 용접에서 비드 성형기의 물리적 힘에 의한 용융지 제어)

  • Ham, Hyo-Sik;Ha, Jong-Moon;Lee, Byung-Woo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2010
  • Due to excellent weld quality, orbital welding with TIG is widely applied to pipe welding. But concave back bead is formed easily in overhead and inclined-up position of butt orbital welding. It is difficult to find a paper to overcome this problem. In this study, in order to make convex back bead in overhead and inclined-up position of pipe 5G welding, control method of molten pool was actively investigated. Melt run welds were conducted on thickness 4.0mm SS400 with overhead and inclined-up position and was observed the variation of bead shape after welding with the bead former developed. The height of back bead showed the trend of increase as the distance from molten pool to the bead former was decreased. Also, there is no trend in the bead width of front and back as welding position was changed or the distance from molten pool to the bead former was decreased.